These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Communication: impact of inertia on biased Brownian transport in confined geometries. Martens S; Sokolov IM; Schimansky-Geier L J Chem Phys; 2012 Mar; 136(11):111102. PubMed ID: 22443741 [TBL] [Abstract][Full Text] [Related]
6. Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion. Makhnovskii YA; Berezhkovskii AM; Bogachev LV; Zitserman VY J Phys Chem B; 2011 Apr; 115(14):3992-4002. PubMed ID: 21417298 [TBL] [Abstract][Full Text] [Related]
7. Diffusion in a tube of alternating diameter. Makhnovskii YA; Berezhkovskii AM; Zitserman VY Chem Phys; 2010 May; 370(1-3):238-243. PubMed ID: 29353956 [TBL] [Abstract][Full Text] [Related]
8. Biased diffusion in tubes formed by spherical compartments. Berezhkovskii AM; Dagdug L J Chem Phys; 2010 Oct; 133(13):134102. PubMed ID: 20942518 [TBL] [Abstract][Full Text] [Related]
9. Communication: Turnover behavior of effective mobility in a tube with periodic entropy potential. Dagdug L; Berezhkovskii AM; Makhnovskii YA; Zitserman VY; Bezrukov SM J Chem Phys; 2011 Mar; 134(10):101102. PubMed ID: 21405148 [TBL] [Abstract][Full Text] [Related]
10. Brownian escape and force-driven transport through entropic barriers: Particle size effect. Cheng KL; Sheng YJ; Tsao HK J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425 [TBL] [Abstract][Full Text] [Related]
11. Aris-Taylor dispersion in tubes with dead ends. Dagdug L; Berezhkovskii AM; Skvortsov AT J Chem Phys; 2014 Jul; 141(2):024705. PubMed ID: 25028036 [TBL] [Abstract][Full Text] [Related]
12. Force-dependent mobility and entropic rectification in tubes of periodically varying geometry. Dagdug L; Berezhkovskii AM; Makhnovskii YA; Zitserman VY; Bezrukov SM J Chem Phys; 2012 Jun; 136(21):214110. PubMed ID: 22697533 [TBL] [Abstract][Full Text] [Related]
13. Effective diffusivity of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width. Dagdug L; Berezhkovskii AM; Zitserman VY; Bezrukov SM Phys Rev E; 2021 Jun; 103(6-1):062106. PubMed ID: 34271681 [TBL] [Abstract][Full Text] [Related]
14. Aris-Taylor dispersion with drift and diffusion of particles on the tube wall. Berezhkovskii AM; Skvortsov AT J Chem Phys; 2013 Aug; 139(8):084101. PubMed ID: 24006968 [TBL] [Abstract][Full Text] [Related]
15. Steering the potential barriers: entropic to energetic. Burada PS; Schmid G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051128. PubMed ID: 21230458 [TBL] [Abstract][Full Text] [Related]
16. Transport of a heated granular gas in a washboard potential. Costantini G; Cecconi F; Marini-Bettolo-Marconi U J Chem Phys; 2006 Nov; 125(20):204711. PubMed ID: 17144727 [TBL] [Abstract][Full Text] [Related]
17. Communications: Drift and diffusion in a tube of periodically varying diameter. Driving force induced intermittency. Berezhkovskii AM; Dagdug L; Makhnovskii YA; Zitserman VY J Chem Phys; 2010 Jun; 132(22):221104. PubMed ID: 20550383 [TBL] [Abstract][Full Text] [Related]
18. First passage, looping, and direct transition in expanding and narrowing tubes: Effects of the entropy potential. Berezhkovskii AM; Dagdug L; Bezrukov SM J Chem Phys; 2017 Oct; 147(13):134104. PubMed ID: 28987083 [TBL] [Abstract][Full Text] [Related]
19. Brownian motion of a particle with arbitrary shape. Cichocki B; Ekiel-Jeżewska ML; Wajnryb E J Chem Phys; 2015 Jun; 142(21):214902. PubMed ID: 26049519 [TBL] [Abstract][Full Text] [Related]
20. Transport of finite size particles in confined narrow channels: diffusion, coherence, and particle separation. Ai BQ; Wu JC J Chem Phys; 2013 Jul; 139(3):034114. PubMed ID: 23883017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]