These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25481499)

  • 1. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.
    Kobryn HT; Lantzke R; Bell R; Admiraal R
    J Environ Manage; 2015 Mar; 150():138-148. PubMed ID: 25481499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques.
    Thilagavathi N; Subramani T; Suresh M; Karunanidhi D
    Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.].
    Zuo L; Wang HJ; Liu RG; Liu Y; Shang R
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):599-606. PubMed ID: 29692076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Sensing Monitoring of Changes in Soil Salinity: A Case Study in Inner Mongolia, China.
    Wu J; Vincent B; Yang J; Bouarfa S; Vidal A
    Sensors (Basel); 2008 Nov; 8(11):7035-7049. PubMed ID: 27873914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A methodology to estimate the future extent of dryland salinity in the southwest of Western Australia.
    Caccetta P; Dunne R; George R; McFarlane D
    J Environ Qual; 2010; 39(1):26-34. PubMed ID: 20048291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].
    Yao Y; Ding JL; Zhang F; Wang G; Jiang HN
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3213-20. PubMed ID: 24564152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the difference between the normalized difference vegetation index and net primary productivity as the indicators of vegetation vigor assessment at landscape scale.
    Xu C; Li Y; Hu J; Yang X; Sheng S; Liu M
    Environ Monit Assess; 2012 Mar; 184(3):1275-86. PubMed ID: 21625921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy).
    Barbarella M; De Giglio M; Greggio N
    Environ Monit Assess; 2015 Apr; 187(4):166. PubMed ID: 25750065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dryland salinity in Western Australia: managing a changing water cycle.
    Taylor RJ; Hoxley G
    Water Sci Technol; 2003; 47(7-8):201-7. PubMed ID: 12793681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina.
    Jayawickreme DH; Santoni CS; Kim JH; Jobbágy EG; Jackson RB
    Ecol Appl; 2011 Oct; 21(7):2367-79. PubMed ID: 22073629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling.
    Dubovyk O; Menz G; Conrad C; Kan E; Machwitz M; Khamzina A
    Environ Monit Assess; 2013 Jun; 185(6):4775-90. PubMed ID: 23054271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drainage water salinity and quality across nested scales in the Nile Delta of Egypt.
    El-Agha DE; Molle F; Rap E; El Bialy M; El-Hassan WA
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32239-32250. PubMed ID: 31873902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote-sensing Based Assessment of Long-term Riparian Vegetation Health in Proximity to Agricultural Lands with Herbicide Use History.
    Yousef F; Gebremichael M; Ghebremichael L; Perine J
    Integr Environ Assess Manag; 2019 Jul; 15(4):528-543. PubMed ID: 30900801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.
    Zawadzki J; Przeździecki K; Miatkowski Z
    J Environ Manage; 2016 Jan; 166():605-14. PubMed ID: 26610610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Winter Stress Vulnerability of High-Latitude Understory Vegetation Using Intraspecific Trait Variability and Remote Sensing Approaches.
    Ritz E; Bjerke JW; Tømmervik H
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images.
    Hengkai L; Feng X; Qin L
    J Environ Manage; 2020 Aug; 267():110653. PubMed ID: 32364134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the vegetation indices on Sentinel-2A images for predicting the soil productivity potential in Bursa, Turkey.
    Dedeoğlu M; Başayiğit L; Yüksel M; Kaya F
    Environ Monit Assess; 2019 Dec; 192(1):16. PubMed ID: 31814052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis.
    Hutchinson JMS; Jacquin A; Hutchinson SL; Verbesselt J
    J Environ Manage; 2015 Mar; 150():355-366. PubMed ID: 25441663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.