These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25481669)

  • 1. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process.
    Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ
    Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes.
    Jiao A; Han X; Critser JK; Ma H
    Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.
    Han X; Ma H; Jiao A; Critser JK
    Cryobiology; 2008 Jun; 56(3):195-203. PubMed ID: 18430413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of cooling and warming rates in vitrification-based plant cryopreservation protocols.
    Teixeira AS; González-Benito ME; Molina-García AD
    Biotechnol Prog; 2014; 30(5):1177-84. PubMed ID: 24933257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.
    Wang Y; Zhou XM; Jiang CJ; Yu YT
    Cryo Letters; 2018; 39(1):1-6. PubMed ID: 29734410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stainless steel tube-based cell cryopreservation containers.
    Shih WH; Yu ZY; Wu WT
    Cryobiology; 2013 Dec; 67(3):280-6. PubMed ID: 23993919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects on rapid cooling of small samples in quenching.
    Cao Q; Hua TC
    Ann N Y Acad Sci; 1998 Sep; 858():262-9. PubMed ID: 9988670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation.
    Li W; Zhou X; Wang H; Liu B
    Cryo Letters; 2012; 33(2):144-50. PubMed ID: 22576118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.
    Eisenberg DP; Bischof JC; Rabin Y
    J Biomech Eng; 2016 Jan; 138(1):. PubMed ID: 26592974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.
    Shi M; Ling K; Yong KW; Li Y; Feng S; Zhang X; Pingguan-Murphy B; Lu TJ; Xu F
    Sci Rep; 2015 Dec; 5():17928. PubMed ID: 26655688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal analysis of marginal conditions to facilitate cryopreservation by vitrification using a semi-empirical approach.
    Joshi P; Rabin Y
    Cryobiology; 2019 Dec; 91():128-136. PubMed ID: 31526802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cryobiology of complex tissues].
    Vannereau H; Novakoviteh G; Carin M
    Contracept Fertil Sex; 1998; 26(7-8):573-7. PubMed ID: 9810134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.
    Sansinena M; Santos MV; Zaritzky N; Chirife J
    Theriogenology; 2012 May; 77(8):1717-21. PubMed ID: 22225685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parasite cryopreservation by vitrification.
    James ER
    Cryobiology; 2004 Dec; 49(3):201-10. PubMed ID: 15615606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy state and cryopreservation of mint shoot tips.
    Teixeira AS; González-Benito ME; Molina-García AD
    Biotechnol Prog; 2013; 29(3):707-17. PubMed ID: 23436805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.