These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25481756)

  • 1. Crimean-Congo haemorrhagic fever replication interplays with regulation mechanisms of apoptosis.
    Karlberg H; Tan YJ; Mirazimi A
    J Gen Virol; 2015 Mar; 96(Pt 3):538-546. PubMed ID: 25481756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis.
    Barnwal B; Karlberg H; Mirazimi A; Tan YJ
    J Biol Chem; 2016 Jan; 291(2):582-92. PubMed ID: 26574543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection.
    Karlberg H; Tan YJ; Mirazimi A
    J Biol Chem; 2011 Feb; 286(5):3227-34. PubMed ID: 21123175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk.
    Rodrigues R; Paranhos-Baccalà G; Vernet G; Peyrefitte CN
    PLoS One; 2012; 7(1):e29712. PubMed ID: 22238639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection.
    Scholte FEM; Hua BL; Spengler JR; Dzimianski JV; Coleman-McCray JD; Welch SR; McMullan LK; Nichol ST; Pegan SD; Spiropoulou CF; Bergeron É
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage.
    Wang Y; Dutta S; Karlberg H; Devignot S; Weber F; Hao Q; Tan YJ; Mirazimi A; Kotaka M
    J Virol; 2012 Nov; 86(22):12294-303. PubMed ID: 22951837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coxiella burnetii induces apoptosis during early stage infection via a caspase-independent pathway in human monocytic THP-1 cells.
    Zhang Y; Zhang G; Hendrix LR; Tesh VL; Samuel JE
    PLoS One; 2012; 7(1):e30841. PubMed ID: 22303462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways.
    Zhao J; Bowman L; Zhang X; Vallyathan V; Young SH; Castranova V; Ding M
    J Toxicol Environ Health A; 2009; 72(19):1141-9. PubMed ID: 20077182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Crimean-Congo Hemorrhagic Fever Virus-Induced Hepatic Injury Using Antibody-Mediated Type I Interferon Blockade in Mice.
    Lindquist ME; Zeng X; Altamura LA; Daye SP; Delp KL; Blancett C; Coffin KM; Koehler JW; Coyne S; Shoemaker CJ; Garrison AR; Golden JW
    J Virol; 2018 Nov; 92(21):. PubMed ID: 30111561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavokawain B inhibits growth of human squamous carcinoma cells: Involvement of apoptosis and cell cycle dysregulation in vitro and in vivo.
    Lin E; Lin WH; Wang SY; Chen CS; Liao JW; Chang HW; Chen SC; Lin KY; Wang L; Yang HL; Hseu YC
    J Nutr Biochem; 2012 Apr; 23(4):368-78. PubMed ID: 21543203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle.
    Surtees R; Dowall SD; Shaw A; Armstrong S; Hewson R; Carroll MW; Mankouri J; Edwards TA; Hiscox JA; Barr JN
    J Virol; 2016 Oct; 90(20):9305-16. PubMed ID: 27512070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection.
    Fraisier C; Rodrigues R; Vu Hai V; Belghazi M; Bourdon S; Paranhos-Baccala G; Camoin L; Almeras L; Peyrefitte CN
    Virus Res; 2014 Jan; 179():187-203. PubMed ID: 24184319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions.
    Papa A; Tsergouli K; Tsioka K; Mirazimi A
    Front Cell Infect Microbiol; 2017; 7():213. PubMed ID: 28603698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus.
    Zivcec M; Scholte FE; Spiropoulou CF; Spengler JR; Bergeron É
    Viruses; 2016 Apr; 8(4):106. PubMed ID: 27110812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721.
    Lu Z; Cao S; Zhou H; Hua L; Zhang S; Cao J
    PLoS One; 2015; 10(5):e0125727. PubMed ID: 25933104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small Interfering RNAs Are Highly Effective Inhibitors of Crimean-Congo Hemorrhagic Fever Virus Replication In Vitro.
    Földes F; Madai M; Papp H; Kemenesi G; Zana B; Geiger L; Gombos K; Somogyi B; Bock-Marquette I; Jakab F
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33297527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A virus-like particle system identifies the endonuclease domain of Crimean-Congo hemorrhagic fever virus.
    Devignot S; Bergeron E; Nichol S; Mirazimi A; Weber F
    J Virol; 2015 Jun; 89(11):5957-67. PubMed ID: 25810550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crimean-Congo hemorrhagic fever virus delays activation of the innate immune response.
    Andersson I; Karlberg H; Mousavi-Jazi M; Martínez-Sobrido L; Weber F; Mirazimi A
    J Med Virol; 2008 Aug; 80(8):1397-404. PubMed ID: 18551619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the mitochondrial pathway in serum deprivation-induced apoptosis of rat endplate cells.
    Li D; Zhu B; Ding L; Lu W; Xu G; Wu J
    Biochem Biophys Res Commun; 2014 Sep; 452(3):354-60. PubMed ID: 25172659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic 1,4-anthracenedione analogs induce cytochrome c release, caspase-9, -3, and -8 activities, poly(ADP-ribose) polymerase-1 cleavage and internucleosomal DNA fragmentation in HL-60 cells by a mechanism which involves caspase-2 activation but not Fas signaling.
    Perchellet EM; Wang Y; Weber RL; Sperfslage BJ; Lou K; Crossland J; Hua DH; Perchellet JP
    Biochem Pharmacol; 2004 Feb; 67(3):523-37. PubMed ID: 15037204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.