These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 25482025)
21. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Navratilova Z; Giocomo LM; Fellous JM; Hasselmo ME; McNaughton BL Hippocampus; 2012 Apr; 22(4):772-89. PubMed ID: 21484936 [TBL] [Abstract][Full Text] [Related]
22. Interspike Intervals Reveal Functionally Distinct Cell Populations in the Medial Entorhinal Cortex. Latuske P; Toader O; Allen K J Neurosci; 2015 Aug; 35(31):10963-76. PubMed ID: 26245960 [TBL] [Abstract][Full Text] [Related]
23. Two distinct types of depolarizing afterpotentials are differentially expressed in stellate and pyramidal-like neurons of entorhinal-cortex layer II. Alessi C; Raspanti A; Magistretti J Hippocampus; 2016 Mar; 26(3):380-404. PubMed ID: 26342161 [TBL] [Abstract][Full Text] [Related]
24. Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex. Richter H; Heinemann U; Eder C Neurosci Lett; 2000 Mar; 281(1):33-6. PubMed ID: 10686409 [TBL] [Abstract][Full Text] [Related]
25. Consequences of parameter differences in a model of short-term persistent spiking buffers provided by pyramidal cells in entorhinal cortex. Koene RA; Hasselmo ME Brain Res; 2008 Apr; 1202():54-67. PubMed ID: 17698043 [TBL] [Abstract][Full Text] [Related]
26. Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. Hamam BN; Amaral DG; Alonso AA J Comp Neurol; 2002 Sep; 451(1):45-61. PubMed ID: 12209840 [TBL] [Abstract][Full Text] [Related]
27. Calcium currents in acutely isolated stellate and pyramidal neurons of rat entorhinal cortex. Bruehl C; Wadman WJ Brain Res; 1999 Jan; 816(2):554-62. PubMed ID: 9878880 [TBL] [Abstract][Full Text] [Related]
28. Bat and rat neurons differ in theta-frequency resonance despite similar coding of space. Heys JG; MacLeod KM; Moss CF; Hasselmo ME Science; 2013 Apr; 340(6130):363-7. PubMed ID: 23599495 [TBL] [Abstract][Full Text] [Related]
29. Spatial representation in the entorhinal cortex. Fyhn M; Molden S; Witter MP; Moser EI; Moser MB Science; 2004 Aug; 305(5688):1258-64. PubMed ID: 15333832 [TBL] [Abstract][Full Text] [Related]
30. Theta rhythm and the encoding and retrieval of space and time. Hasselmo ME; Stern CE Neuroimage; 2014 Jan; 85 Pt 2(0 2):656-66. PubMed ID: 23774394 [TBL] [Abstract][Full Text] [Related]
31. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Sargolini F; Fyhn M; Hafting T; McNaughton BL; Witter MP; Moser MB; Moser EI Science; 2006 May; 312(5774):758-62. PubMed ID: 16675704 [TBL] [Abstract][Full Text] [Related]
32. Classification of theta-related cells in the entorhinal cortex: cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta-related cells. Dickson CT; Kirk IJ; Oddie SD; Bland BH Hippocampus; 1995; 5(4):306-19. PubMed ID: 8589794 [TBL] [Abstract][Full Text] [Related]
33. Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity. Fernandez FR; Malerba P; Bressloff PC; White JA J Neurosci; 2013 Apr; 33(14):6027-40. PubMed ID: 23554484 [TBL] [Abstract][Full Text] [Related]
34. Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. Hamam BN; Kennedy TE; Alonso A; Amaral DG J Comp Neurol; 2000 Mar; 418(4):457-72. PubMed ID: 10713573 [TBL] [Abstract][Full Text] [Related]
35. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons. Economo MN; Martínez JJ; White JA Hippocampus; 2014 Dec; 24(12):1493-505. PubMed ID: 25044927 [TBL] [Abstract][Full Text] [Related]
36. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Ylinen A; Soltész I; Bragin A; Penttonen M; Sik A; Buzsáki G Hippocampus; 1995; 5(1):78-90. PubMed ID: 7787949 [TBL] [Abstract][Full Text] [Related]
37. Distance coding strategies based on the entorhinal grid cell system. Huhn Z; Somogyvári Z; Kiss T; Erdi P Neural Netw; 2009; 22(5-6):536-43. PubMed ID: 19604670 [TBL] [Abstract][Full Text] [Related]
38. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations. Grossberg S; Pilly PK Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136 [TBL] [Abstract][Full Text] [Related]
39. Speed cells in the medial entorhinal cortex. Kropff E; Carmichael JE; Moser MB; Moser EI Nature; 2015 Jul; 523(7561):419-24. PubMed ID: 26176924 [TBL] [Abstract][Full Text] [Related]
40. Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta-related cells. Bland BH; Konopacki J; Dyck RH J Neurophysiol; 2002 Dec; 88(6):3046-66. PubMed ID: 12466429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]