These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25482302)

  • 1. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters.
    Sinha N; Cifter G; Sajo E; Kumar R; Sridhar S; Nguyen PL; Cormack RA; Makrigiorgos GM; Ngwa W
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):385-92. PubMed ID: 25482302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling gold nanoparticle-eluting spacer degradation during brachytherapy application with in situ dose painting.
    Boateng F; Ngwa W
    Br J Radiol; 2017 Jun; 90(1074):20170069. PubMed ID: 28383280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bioerodable eluting-spacers for radiotherapy applications with
    Boateng F; Ngwa W
    Br J Radiol; 2019 Jun; 92(1098):20180745. PubMed ID: 31084497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the dose enhancement exclusively in tumor tissue due to the presence of GNPs.
    Khodadadi A; Nedaie HA; Sadeghi M; Ghassemi MR; Mesbahi A; Banaee N
    Appl Radiat Isot; 2019 Mar; 145():39-46. PubMed ID: 30580248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.
    Ngwa W; Makrigiorgos GM; Berbeco RI
    Med Phys; 2012 Jan; 39(1):392-8. PubMed ID: 22225308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted radiotherapy enhancement during electronic brachytherapy of accelerated partial breast irradiation (APBI) using controlled release of gold nanoparticles.
    Cifter G; Chin J; Cifter F; Altundal Y; Sinha N; Sajo E; Ngwa W
    Phys Med; 2015 Dec; 31(8):1070-1074. PubMed ID: 26404139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular brachytherapy dosimetry for 103Pd and 125I in the presence of gold nanoparticles: a Monte Carlo study.
    Asadi S; Vaez-Zadeh M; Vahidian M; Marghchouei M; Masoudi SF
    J Appl Clin Med Phys; 2016 May; 17(3):90-99. PubMed ID: 27167265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement.
    Ngwa W; Makrigiorgos GM; Berbeco RI
    Phys Med Biol; 2010 Nov; 55(21):6533-48. PubMed ID: 20959684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices.
    Cormack RA; Sridhar S; Suh WW; D'Amico AV; Makrigiorgos GM
    Int J Radiat Oncol Biol Phys; 2010 Feb; 76(2):615-23. PubMed ID: 19879699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy.
    Reynoso FJ; Manohar N; Krishnan S; Cho SH
    Med Phys; 2014 Oct; 41(10):101709. PubMed ID: 25281948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels.
    Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L
    J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A detailed Monte Carlo evaluation of
    Gray T; Bassiri N; David S; Patel DY; Stathakis S; Kirby N; Mayer KM
    Phys Med Biol; 2020 Jul; 65(13):135007. PubMed ID: 32434159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique.
    Kakade NR; Sharma SD
    J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining optimal eluter design by modeling physical dose enhancement in brachytherapy.
    Guthier CV; D'Amico AV; King MT; Nguyen PL; Orio PF; Sridhar S; Makrigiorgos GM; Cormack RA
    Med Phys; 2018 Jun; ():. PubMed ID: 29905964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation.
    Hao Y; Altundal Y; Moreau M; Sajo E; Kumar R; Ngwa W
    Phys Med Biol; 2015 Sep; 60(18):7035-43. PubMed ID: 26309064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.