BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25482336)

  • 1. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application.
    Obayi CS; Tolouei R; Mostavan A; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Mantovani D
    Biomatter; 2016; 6(1):e959874. PubMed ID: 25482336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.
    Moravej M; Prima F; Fiset M; Mantovani D
    Acta Biomater; 2010 May; 6(5):1726-35. PubMed ID: 20085829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants.
    Obayi CS; Tolouei R; Paternoster C; Turgeon S; Okorie BA; Obikwelu DO; Cassar G; Buhagiar J; Mantovani D
    Acta Biomater; 2015 Apr; 17():68-77. PubMed ID: 25644452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application.
    Zhou WR; Zheng YF; Leeflang MA; Zhou J
    Acta Biomater; 2013 Nov; 9(10):8488-98. PubMed ID: 23385218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering.
    Cheng J; Zheng YF
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):485-97. PubMed ID: 23359385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
    Ahmadkhaniha D; Järvenpää A; Jaskari M; Sohi MH; Zarei-Hanzaki A; Fedel M; Deflorian F; Karjalainen LP
    J Mech Behav Biomed Mater; 2016 Aug; 61():360-370. PubMed ID: 27108346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications.
    Mostaed E; Vedani M; Hashempour M; Bestetti M
    Biomatter; 2014; 4():e28283. PubMed ID: 25482411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling.
    Seong JW; Kim WJ
    Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.
    Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.
    Huang T; Cheng J; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():43-53. PubMed ID: 24411350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe-Fe2O3 composites.
    Cheng J; Huang T; Zheng YF
    J Biomed Mater Res A; 2014 Jul; 102(7):2277-87. PubMed ID: 23894098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.
    Zhang E; Yang L; Xu J; Chen H
    Acta Biomater; 2010 May; 6(5):1756-62. PubMed ID: 19941979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application.
    Wu Q; Zhu S; Wang L; Liu Q; Yue G; Wang J; Guan S
    J Mech Behav Biomed Mater; 2012 Apr; 8():1-7. PubMed ID: 22402149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting.
    Kaiser R; Williamson K; O'Brien C; Ramirez-Garcia S; Browne DJ
    J Mech Behav Biomed Mater; 2013 Aug; 24():53-63. PubMed ID: 23683759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The processing of ultrafine-grained Mg tubes for biodegradable stents.
    Ge Q; Dellasega D; Demir AG; Vedani M
    Acta Biomater; 2013 Nov; 9(10):8604-10. PubMed ID: 23333440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of grain size on the ductility of micro-scale stainless steel stent struts.
    Murphy BP; Cuddy H; Harewood FJ; Connolley T; McHugh PE
    J Mater Sci Mater Med; 2006 Jan; 17(1):1-6. PubMed ID: 16389466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.