These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25482660)

  • 1. A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure.
    Shearer T
    J Biomech; 2015 Jan; 48(2):290-7. PubMed ID: 25482660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.
    Shearer T
    J Biomech; 2015 Sep; 48(12):3017-25. PubMed ID: 26283409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons.
    Pioletti DP; Rakotomanana LR; Benvenuti JF; Leyvraz PF
    J Biomech; 1998 Aug; 31(8):753-7. PubMed ID: 9796676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The denticulate ligament - Tensile characterisation and finite element micro-scale model of the structure stabilising spinal cord.
    Polak-Kraśna K; Robak-Nawrocka S; Szotek S; Czyż M; Gheek D; Pezowicz C
    J Mech Behav Biomed Mater; 2019 Mar; 91():10-17. PubMed ID: 30529981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single integral finite strain viscoelastic model of ligaments and tendons.
    Johnson GA; Livesay GA; Woo SL; Rajagopal KR
    J Biomech Eng; 1996 May; 118(2):221-6. PubMed ID: 8738788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A poroelastic model that predicts some phenomenological responses of ligaments and tendons.
    Atkinson TS; Haut RC; Altiero NJ
    J Biomech Eng; 1997 Nov; 119(4):400-5. PubMed ID: 9407277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis.
    Cheng T; Gan RZ
    Biomech Model Mechanobiol; 2008 Oct; 7(5):387-94. PubMed ID: 17710457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average.
    Lu J; He X
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1833-1850. PubMed ID: 34173928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of tendon crimp with applied tensile strain.
    Hansen KA; Weiss JA; Barton JK
    J Biomech Eng; 2002 Feb; 124(1):72-7. PubMed ID: 11871607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a freeze substitution fixation technique and histological crimp analysis for characterizing regions of strain in ligaments loaded in situ.
    Boorman RS; Norman T; Matsen FA; Clark JM
    J Orthop Res; 2006 Apr; 24(4):793-9. PubMed ID: 16514649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Arterial Hyperelastic Models to Uncertainties in Stress-Free Measurements.
    Emuna N; Durban D; Osovski S
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum description of the Poisson's ratio of ligament and tendon under finite deformation.
    Swedberg AM; Reese SP; Maas SA; Ellis BJ; Weiss JA
    J Biomech; 2014 Sep; 47(12):3201-9. PubMed ID: 25134434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults.
    Stäubli HU; Schatzmann L; Brunner P; Rincón L; Nolte LP
    Am J Sports Med; 1999; 27(1):27-34. PubMed ID: 9934415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the effect of collagen fibril alignment on ligament mechanical behavior.
    Stender CJ; Rust E; Martin PT; Neumann EE; Brown RJ; Lujan TJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):543-557. PubMed ID: 29177933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometrical changes of knee ligaments and patellar tendon during passive flexion.
    Belvedere C; Ensini A; Feliciangeli A; Cenni F; D'Angeli V; Giannini S; Leardini A
    J Biomech; 2012 Jul; 45(11):1886-92. PubMed ID: 22677336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative comparison of ligament formulation and pre-strain in finite element analysis of the human lumbar spine.
    Hortin MS; Bowden AE
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1505-18. PubMed ID: 27007776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.