These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 25482672)
1. The CNS under pathophysiologic attack--examining the role of K₂p channels. Ehling P; Cerina M; Budde T; Meuth SG; Bittner S Pflugers Arch; 2015 May; 467(5):959-72. PubMed ID: 25482672 [TBL] [Abstract][Full Text] [Related]
3. Altered neuronal expression of TASK1 and TASK3 potassium channels in rodent and human autoimmune CNS inflammation. Meuth SG; Kanyshkov T; Melzer N; Bittner S; Kieseier BC; Budde T; Wiendl H Neurosci Lett; 2008 Dec; 446(2-3):133-8. PubMed ID: 18824070 [TBL] [Abstract][Full Text] [Related]
4. Role of leak potassium channels in pain signaling. Li XY; Toyoda H Brain Res Bull; 2015 Oct; 119(Pt A):73-9. PubMed ID: 26321392 [TBL] [Abstract][Full Text] [Related]
7. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. Khoubza L; Chatelain FC; Feliciangeli S; Lesage F; Bichet D J Physiol; 2021 Feb; 599(4):1041-1055. PubMed ID: 33347640 [TBL] [Abstract][Full Text] [Related]
8. Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Luo Y; Huang L; Liao P; Jiang R Neural Plast; 2021; 2021():8643129. PubMed ID: 34434230 [TBL] [Abstract][Full Text] [Related]
10. Regulation of recombinant human brain tandem P domain K+ channels by hypoxia: a role for O2 in the control of neuronal excitability? Kemp PJ; Peers C; Lewis A; Miller P J Cell Mol Med; 2004; 8(1):38-44. PubMed ID: 15090259 [TBL] [Abstract][Full Text] [Related]
11. Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms. Bittner S; Bobak N; Hofmann MS; Schuhmann MK; Ruck T; Göbel K; Brück W; Wiendl H; Meuth SG Int J Mol Sci; 2015 Jul; 16(8):16880-96. PubMed ID: 26213925 [TBL] [Abstract][Full Text] [Related]
12. The K Albrecht S; Korr S; Nowack L; Narayanan V; Starost L; Stortz F; Araúzo-Bravo MJ; Meuth SG; Kuhlmann T; Hundehege P Glia; 2019 May; 67(5):870-883. PubMed ID: 30623969 [TBL] [Abstract][Full Text] [Related]
13. DCPIB, an Inhibitor of Volume-Regulated Anion Channels, Distinctly Modulates K2P Channels. Lv J; Liang Y; Zhang S; Lan Q; Xu Z; Wu X; Kang L; Ren J; Cao Y; Wu T; Lin KL; Yung KKL; Cao X; Pang J; Zhou P ACS Chem Neurosci; 2019 Jun; 10(6):2786-2793. PubMed ID: 30935201 [TBL] [Abstract][Full Text] [Related]
15. TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 critically influence T lymphocyte effector functions. Meuth SG; Bittner S; Meuth P; Simon OJ; Budde T; Wiendl H J Biol Chem; 2008 May; 283(21):14559-70. PubMed ID: 18375952 [TBL] [Abstract][Full Text] [Related]
16. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons. Burgos P; Zúñiga R; Domínguez P; Delgado-López F; Plant LD; Zúñiga L Biochem Biophys Res Commun; 2014 Oct; 453(4):754-60. PubMed ID: 25305496 [TBL] [Abstract][Full Text] [Related]
17. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. O'Kelly I Pflugers Arch; 2015 May; 467(5):1133-42. PubMed ID: 25413469 [TBL] [Abstract][Full Text] [Related]
18. Identification and distribution of a two-pore domain potassium channel in the CNS of Aplysia californica. Jezzini SH; Moroz LL Brain Res Mol Brain Res; 2004 Aug; 127(1-2):27-38. PubMed ID: 15306118 [TBL] [Abstract][Full Text] [Related]
19. Pathophysiological Role of K Lee LM; Müntefering T; Budde T; Meuth SG; Ruck T Cell Physiol Biochem; 2021 Mar; 55(S3):65-86. PubMed ID: 33667332 [TBL] [Abstract][Full Text] [Related]
20. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. Suzuki Y; Tsutsumi K; Miyamoto T; Yamamura H; Imaizumi Y PLoS One; 2017; 12(10):e0186252. PubMed ID: 29016681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]