These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25482980)
21. Effects of a silver nanomaterial on cellular organelles and time course of oxidative stress in a fish cell line (PLHC-1). Bermejo-Nogales A; Fernández M; Fernández-Cruz ML; Navas JM Comp Biochem Physiol C Toxicol Pharmacol; 2016 Dec; 190():54-65. PubMed ID: 27544301 [TBL] [Abstract][Full Text] [Related]
22. Effects of Copper Oxide Nanoparticles on Tissue Accumulation and Antioxidant Enzymes of Galleria mellonella L. Sezer Tuncsoy B; Tuncsoy M; Gomes T; Sousa V; Teixeira MR; Bebianno MJ; Ozalp P Bull Environ Contam Toxicol; 2019 Mar; 102(3):341-346. PubMed ID: 30600390 [TBL] [Abstract][Full Text] [Related]
23. Bacterial Inoculant Treatment of Bermudagrass Alters Ovipositional Behavior, Larval and Pupal Weights of the Fall Armyworm (Lepidoptera: Noctuidae). Murphey Coy R; Held DW; Kloepper JW Environ Entomol; 2017 Aug; 46(4):831-838. PubMed ID: 28881947 [TBL] [Abstract][Full Text] [Related]
24. PHYSIOLOGICAL EFFECTS OF RESVERATROL AND COUMARIC ACID ON TWO MAJOR GROUNDNUT PESTS AND THEIR EGG PARASITOID BEHAVIOR. Sambangi P; Rani PU Arch Insect Biochem Physiol; 2016 Apr; 91(4):230-45. PubMed ID: 26890503 [TBL] [Abstract][Full Text] [Related]
25. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure. Shu Y; Zhou J; Lu K; Li K; Zhou Q Chemosphere; 2015 Nov; 139():441-51. PubMed ID: 26248226 [TBL] [Abstract][Full Text] [Related]
26. Antifeedant, larvicidal and growth inhibitory effects of ononitol monohydrate isolated from Cassia tora L. against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Baskar K; Ignacimuthu S Chemosphere; 2012 Jul; 88(4):384-8. PubMed ID: 22436590 [TBL] [Abstract][Full Text] [Related]
27. Dietary oxyclozanide influences antioxidant enzyme activities and damages DNA in Galleria mellonella (Lepidoptera: Pyralidae). Çelik C; Stanley D; Büyükgüzel E Environ Entomol; 2024 Oct; 53(5):789-800. PubMed ID: 39121012 [TBL] [Abstract][Full Text] [Related]
28. Bacillus subtilis chitinase identified by matrix-assisted laser desorption/ionization time-of flight/time of flight mass spectrometry has insecticidal activity against Spodoptera litura Fab. Chandrasekaran R; Revathi K; Thanigaivel A; Kirubakaran SA; Senthil-Nathan S Pestic Biochem Physiol; 2014 Nov; 116():1-12. PubMed ID: 25454515 [TBL] [Abstract][Full Text] [Related]
29. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
30. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Li Y; Qin T; Ingle T; Yan J; He W; Yin JJ; Chen T Arch Toxicol; 2017 Jan; 91(1):509-519. PubMed ID: 27180073 [TBL] [Abstract][Full Text] [Related]
31. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. Vannini C; Domingo G; Onelli E; Prinsi B; Marsoni M; Espen L; Bracale M PLoS One; 2013; 8(7):e68752. PubMed ID: 23874747 [TBL] [Abstract][Full Text] [Related]
32. Biological activity of Dolichos biflorus L. trypsin inhibitor against lepidopteran insect pests. Nath AK; Kumari R; Sharma S; Sharma H Indian J Exp Biol; 2015 Sep; 53(9):594-9. PubMed ID: 26548079 [TBL] [Abstract][Full Text] [Related]
33. Midgut de novo transcriptome analysis and gene expression profiling of Achaea janata larvae exposed with Bacillus thuringiensis (Bt)-based biopesticide formulation. Dhania NK; Chauhan VK; Chaitanya RK; Dutta-Gupta A Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():81-90. PubMed ID: 30802789 [TBL] [Abstract][Full Text] [Related]
34. Eco-friendly approaches of zinc oxide and silver nitrate nanoparticles along with plant extracts against Shabir A; Sarwar ZM; Ali H Sci Prog; 2023; 106(4):368504231219171. PubMed ID: 38113117 [TBL] [Abstract][Full Text] [Related]
35. The Increase in Temperature Overwhelms Silver Nanoparticle Effects on the Aquatic Invertebrate Limnephilus sp. Batista D; Pascoal C; Cássio F Environ Toxicol Chem; 2020 Jul; 39(7):1429-1437. PubMed ID: 32445252 [TBL] [Abstract][Full Text] [Related]
36. Insect antifeedant and growth regulating activities of salannobutyrolactone and desacetylsalannobutyrolactone. Narasimhan S; Kannan S; Santhanakrishnan VP; Mohankumar R Fitoterapia; 2005 Dec; 76(7-8):740-3. PubMed ID: 16242271 [TBL] [Abstract][Full Text] [Related]
37. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Kumar PM; Murugan K; Madhiyazhagan P; Kovendan K; Amerasan D; Chandramohan B; Dinesh D; Suresh U; Nicoletti M; Alsalhi MS; Devanesan S; Wei H; Kalimuthu K; Hwang JS; Lo Iacono A; Benelli G Parasitol Res; 2016 Feb; 115(2):751-9. PubMed ID: 26499804 [TBL] [Abstract][Full Text] [Related]
38. Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb. Vasantha-Srinivasan P; Senthil-Nathan S; Thanigaivel A; Edwin ES; Ponsankar A; Selin-Rani S; Pradeepa V; Sakthi-Bhagavathy M; Kalaivani K; Hunter WB; Duraipandiyan V; Al-Dhabi NA Chemosphere; 2016 Jul; 155():336-347. PubMed ID: 27135695 [TBL] [Abstract][Full Text] [Related]
39. Economic Injury Level and Demography-Based Control Timing Projection of Spodoptera litura (Lepidoptera: Noctuidae) at Different Growth Stages of Arachis hypogaea. Tuan SJ; Lee CC; Tang LC; Saska P J Econ Entomol; 2017 Apr; 110(2):755-762. PubMed ID: 28334106 [TBL] [Abstract][Full Text] [Related]
40. Comparative proteomic study of phytotoxic effects of silver nanoparticles and silver ions on tobacco plants. Peharec Štefanić P; Jarnević M; Cvjetko P; Biba R; Šikić S; Tkalec M; Cindrić M; Letofsky-Papst I; Balen B Environ Sci Pollut Res Int; 2019 Aug; 26(22):22529-22550. PubMed ID: 31161543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]