These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25482984)

  • 1. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.
    Farraj Y; Grouchko M; Magdassi S
    Chem Commun (Camb); 2015 Jan; 51(9):1587-90. PubMed ID: 25482984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.
    Jeong S; Song HC; Lee WW; Lee SS; Choi Y; Son W; Kim ED; Paik CH; Oh SH; Ryu BH
    Langmuir; 2011 Mar; 27(6):3144-9. PubMed ID: 21338069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.
    Wang Y; Du D; Zhou Z; Xie H; Li J; Zhao Y
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31574997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-Soluble Copper Ink for the Inkjet Fabrication of Flexible Electronic Components.
    Shabanov NS; Rabadanov KS; Suleymanov SI; Amirov AM; Isaev AB; Sobola DS; Murliev EK; Asvarova GA
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MODs vs. NPs: Vying for the Future of Printed Electronics.
    Douglas SP; Mrig S; Knapp CE
    Chemistry; 2021 Jun; 27(31):8062-8081. PubMed ID: 33464657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the Types of Alkanolamines on the Properties of Copper(II) Formate-Based Conductive Ink.
    Yang W; Guo Z; Zhao X; Zhang X; List-Kratochvil EJW
    Langmuir; 2024 Apr; 40(13):7095-7105. PubMed ID: 38511863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of Ligand Denticity-Dependent Oxidation Protection in Copper MOD Inks.
    Marchal W; Mattelaer F; Van Hecke K; Briois V; Longo A; Reenaers D; Elen K; Detavernier C; Deferme W; Van Bael MK; Hardy A
    Langmuir; 2019 Dec; 35(49):16101-16110. PubMed ID: 31697083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics.
    Jason NN; Shen W; Cheng W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16760-6. PubMed ID: 26161620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures.
    Tomotoshi D; Oogami R; Kawasaki H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Reducing Copper Precursor Inks and Photonic Additive Yield Conductive Patterns under Intense Pulsed Light.
    Rosen YS; Yakushenko A; Offenhäusser A; Magdassi S
    ACS Omega; 2017 Feb; 2(2):573-581. PubMed ID: 31457455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Inkjet-Printed Silver Films Based on Nanoparticles and Metal-Organic Decomposition Inks with Different Curing Methods.
    Xiao P; Zhou Y; Gan L; Pan Z; Chen J; Luo D; Yao R; Chen J; Liang H; Ning H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32664692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics.
    Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.