BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25483050)

  • 1. Growth signals employ CGGBP1 to suppress transcription of Alu-SINEs.
    Agarwal P; Enroth S; Teichmann M; Jernberg Wiklund H; Smit A; Westermark B; Singh U
    Cell Cycle; 2016 Jun; 15(12):1558-71. PubMed ID: 25483050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating Pol III transcription to change Pol II transcriptome.
    Ichiyanagi K
    Cell Cycle; 2014; 13(23):3625-6. PubMed ID: 25551358
    [No Abstract]   [Full Text] [Related]  

  • 3. CGGBP1 mitigates cytosine methylation at repetitive DNA sequences.
    Agarwal P; Collier P; Fritz MH; Benes V; Wiklund HJ; Westermark B; Singh U
    BMC Genomics; 2015 May; 16(1):390. PubMed ID: 25981527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity.
    Tajaddod M; Tanzer A; Licht K; Wolfinger MT; Badelt S; Huber F; Pusch O; Schopoff S; Janisiw M; Hofacker I; Jantsch MF
    Genome Biol; 2016 Oct; 17(1):220. PubMed ID: 27782844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.
    Pandey R; Mandal AK; Jha V; Mukerji M
    Genome Biol; 2011 Nov; 12(11):R117. PubMed ID: 22112862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene structure and expression of the 5'-(CGG)(n)-3'-binding protein (CGGBP1).
    Naumann F; Remus R; Schmitz B; Doerfler W
    Genomics; 2004 Jan; 83(1):106-18. PubMed ID: 14667814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro.
    Kropotov A; Sedova V; Ivanov V; Sazeeva N; Tomilin A; Krutilina R; Oei SL; Griesenbeck J; Buchlow G; Tomilin N
    Eur J Biochem; 1999 Mar; 260(2):336-46. PubMed ID: 10095767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements.
    Shankar R; Grover D; Brahmachari SK; Mukerji M
    BMC Evol Biol; 2004 Oct; 4():37. PubMed ID: 15461819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CGGBP1 regulates cell cycle in cancer cells.
    Singh U; Roswall P; Uhrbom L; Westermark B
    BMC Mol Biol; 2011 Jul; 12():28. PubMed ID: 21733196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters.
    Oei SL; Babich VS; Kazakov VI; Usmanova NM; Kropotov AV; Tomilin NV
    Genomics; 2004 May; 83(5):873-82. PubMed ID: 15081116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CGGBP1-dependent CTCF-binding sites restrict ectopic transcription.
    Patel D; Patel M; Datta S; Singh U
    Cell Cycle; 2021 Nov; 20(22):2387-2401. PubMed ID: 34585631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CGGBP1 regulates CTCF occupancy at repeats.
    Patel D; Patel M; Datta S; Singh U
    Epigenetics Chromatin; 2019 Sep; 12(1):57. PubMed ID: 31547883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock.
    Mariner PD; Walters RD; Espinoza CA; Drullinger LF; Wagner SD; Kugel JF; Goodrich JA
    Mol Cell; 2008 Feb; 29(4):499-509. PubMed ID: 18313387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of RNA polymerase III-transcribed Alu loci by computational screening of RNA-Seq data.
    Conti A; Carnevali D; Bollati V; Fustinoni S; Pellegrini M; Dieci G
    Nucleic Acids Res; 2015 Jan; 43(2):817-35. PubMed ID: 25550429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CGGBP1 phosphorylation constitutes a telomere-protection signal.
    Singh U; Maturi V; Jones RE; Paulsson Y; Baird DM; Westermark B
    Cell Cycle; 2014; 13(1):96-105. PubMed ID: 24196442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic bimodal changes in CpG and non-CpG methylation genome-wide upon CGGBP1 loss-of-function.
    Patel D; Patel M; Westermark B; Singh U
    BMC Res Notes; 2018 Jul; 11(1):419. PubMed ID: 29966527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the role of the CGGBP1 protein in FMR1 gene expression.
    Goracci M; Lanni S; Mancano G; Palumbo F; Chiurazzi P; Neri G; Tabolacci E
    Eur J Hum Genet; 2016 May; 24(5):697-703. PubMed ID: 26306647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CGGBP1 is a nuclear and midbody protein regulating abscission.
    Singh U; Westermark B
    Exp Cell Res; 2011 Jan; 317(2):143-50. PubMed ID: 20832400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new twist on cell growth control.
    Cardiello JF; Kugel JF; Goodrich JA
    Cell Cycle; 2014; 13(22):3474-5. PubMed ID: 25493414
    [No Abstract]   [Full Text] [Related]  

  • 20. ALUternative Regulation for Gene Expression.
    Chen LL; Yang L
    Trends Cell Biol; 2017 Jul; 27(7):480-490. PubMed ID: 28209295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.