These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25483271)

  • 1. Integration of lateral porous silicon membranes into planar microfluidics.
    Leïchlé T; Bourrier D
    Lab Chip; 2015 Feb; 15(3):833-8. PubMed ID: 25483271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
    Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nature; 2007 Feb; 445(7129):749-53. PubMed ID: 17301789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization.
    Velleman L; Shearer CJ; Ellis AV; Losic D; Voelcker NH; Shapter JG
    Nanoscale; 2010 Sep; 2(9):1756-61. PubMed ID: 20820706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.
    Cunin F; Milhiet PE; Anglin E; Sailor MJ; Espenel C; Le Grimellec C; Brunel D; Devoisselle JM
    Ultramicroscopy; 2007 Oct; 107(10-11):1048-52. PubMed ID: 17600623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing.
    Zhao Y; Gaur G; Retterer ST; Laibinis PE; Weiss SM
    Anal Chem; 2016 Nov; 88(22):10940-10948. PubMed ID: 27786437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of porous silicon integrated in liquid chromatography chips.
    Tiggelaar RM; Verdoold V; Eghbali H; Desmet G; Gardeniers JG
    Lab Chip; 2009 Feb; 9(3):456-63. PubMed ID: 19156296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices.
    Schmuhl R; Nijdam W; Sekulić J; Chowdhury SR; van Rijn CJ; van den Berg A; ten Elshof JE; Blank DH
    Anal Chem; 2005 Jan; 77(1):178-84. PubMed ID: 15623294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes.
    Qi C; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    Nanotechnology; 2015 Feb; 26(5):055706. PubMed ID: 25590751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.
    Min Y; Jiang B; Wu C; Xia S; Zhang X; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2014 Aug; 1356():148-56. PubMed ID: 24999068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size tuning of luminescent silicon nanoparticles with meso-porous silicon membranes.
    Serdiuk T; Lysenko V; Alekseev S; Skryshevsky VA
    J Colloid Interface Sci; 2011 Dec; 364(1):65-70. PubMed ID: 21890146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA tracking within a nanochannel: device fabrication and experiments.
    Mokkapati VR; Di Virgilio V; Shen C; Mollinger J; Bastemeijer J; Bossche A
    Lab Chip; 2011 Aug; 11(16):2711-9. PubMed ID: 21734983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-on-CMOS integration of microfluidics and electrochemical sensors.
    Huang Y; Mason AJ
    Lab Chip; 2013 Oct; 13(19):3929-34. PubMed ID: 23939616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.