These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 25483363)
21. Improving the efficiency of inverted polymer solar cells by introducing inorganic dopants. Liu C; Li J; Zhang X; He Y; Li Z; Li H; Guo W; Shen L; Ruan S Phys Chem Chem Phys; 2015 Mar; 17(12):7960-5. PubMed ID: 25721798 [TBL] [Abstract][Full Text] [Related]
22. Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization. Li X; Zhang W; Wang X; Gao F; Fang J ACS Appl Mater Interfaces; 2014 Dec; 6(23):20569-73. PubMed ID: 25402413 [TBL] [Abstract][Full Text] [Related]
23. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Chou SY; Ding W Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276 [TBL] [Abstract][Full Text] [Related]
24. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Chen CP; Chan SH; Chao TC; Ting C; Ko BT J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400 [TBL] [Abstract][Full Text] [Related]
25. Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. Chen L; Du D; Sun K; Hou J; Ouyang J ACS Appl Mater Interfaces; 2014 Dec; 6(24):22334-42. PubMed ID: 25415184 [TBL] [Abstract][Full Text] [Related]
26. Optical engineering of uniformly decorated graphene oxide nanoflakes via in situ growth of silver nanoparticles with enhanced plasmonic resonance. Yuan K; Chen L; Chen Y ACS Appl Mater Interfaces; 2014 Dec; 6(23):21069-77. PubMed ID: 25389764 [TBL] [Abstract][Full Text] [Related]
27. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer. Zhang K; Zhong C; Liu S; Mu C; Li Z; Yan H; Huang F; Cao Y ACS Appl Mater Interfaces; 2014 Jul; 6(13):10429-35. PubMed ID: 24923366 [TBL] [Abstract][Full Text] [Related]
28. Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. Zhou Y; Yin X; Luo Q; Zhao X; Zhou D; Han J; Hao F; Tai M; Li J; Liu P; Jiang K; Lin H ACS Appl Mater Interfaces; 2018 Sep; 10(37):31384-31393. PubMed ID: 30125080 [TBL] [Abstract][Full Text] [Related]
29. Device Stability and Light-Soaking Characteristics of High-Efficiency Benzodithiophene-Thienothiophene Copolymer-Based Inverted Organic Solar Cells with F-TiO(x) Electron-Transport Layer. Lim FJ; Krishnamoorthy A; Ho GW ACS Appl Mater Interfaces; 2015 Jun; 7(22):12119-27. PubMed ID: 25961668 [TBL] [Abstract][Full Text] [Related]
30. Nanoimprinting-induced nanomorphological transition in polymer solar cells: enhanced electrical and optical performance. Jeong S; Cho C; Kang H; Kim KH; Yuk Y; Park JY; Kim BJ; Lee JY ACS Nano; 2015 Mar; 9(3):2773-82. PubMed ID: 25688838 [TBL] [Abstract][Full Text] [Related]
31. Role of thin n-type metal-oxide interlayers in inverted organic solar cells. Gadisa A; Liu Y; Samulski ET; Lopez R ACS Appl Mater Interfaces; 2012 Aug; 4(8):3846-51. PubMed ID: 22834558 [TBL] [Abstract][Full Text] [Related]
32. Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration. Waketola AG; Hone FG; Geldasa FT; Genene Z; Mammo W; Tegegne NA ACS Omega; 2024 Feb; 9(7):8082-8091. PubMed ID: 38405528 [TBL] [Abstract][Full Text] [Related]
33. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437 [TBL] [Abstract][Full Text] [Related]
34. Dual Function of UV/Ozone Plasma-Treated Polymer in Polymer/Metal Hybrid Electrodes and Semitransparent Polymer Solar Cells. Zheng W; Lin Y; Zhang Y; Yang J; Peng Z; Liu A; Zhang F; Hou L ACS Appl Mater Interfaces; 2017 Dec; 9(51):44656-44666. PubMed ID: 29210561 [TBL] [Abstract][Full Text] [Related]
35. 3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells. Wang Y; Fu H; Wang Y; Tan L; Chen L; Chen Y Phys Chem Chem Phys; 2016 Apr; 18(17):12175-82. PubMed ID: 27074904 [TBL] [Abstract][Full Text] [Related]
36. Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. Hammond MR; Kline RJ; Herzing AA; Richter LJ; Germack DS; Ro HW; Soles CL; Fischer DA; Xu T; Yu L; Toney MF; Delongchamp DM ACS Nano; 2011 Oct; 5(10):8248-57. PubMed ID: 21939254 [TBL] [Abstract][Full Text] [Related]
37. Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene. Teridi MA; Sookhakian M; Basirun WJ; Zakaria R; Schneider FK; da Silva WJ; Kim J; Lee SJ; Kim HP; Yusoff AR; Jang J Nanoscale; 2015 Apr; 7(16):7091-100. PubMed ID: 25640454 [TBL] [Abstract][Full Text] [Related]
38. Understanding the effects of shape, material and location of incorporation of metal nanoparticles on the performance of plasmonic organic solar cells. Mohan M; Sekar R; Namboothiry MAG RSC Adv; 2020 Jul; 10(44):26126-26132. PubMed ID: 35519780 [TBL] [Abstract][Full Text] [Related]
39. Working from Both Sides: Composite Metallic Semitransparent Top Electrode for High Performance Perovskite Solar Cells. Dai X; Zhang Y; Shen H; Luo Q; Zhao X; Li J; Lin H ACS Appl Mater Interfaces; 2016 Feb; 8(7):4523-31. PubMed ID: 26820688 [TBL] [Abstract][Full Text] [Related]
40. Solution-Processable High-Quality Graphene for Organic Solar Cells. Ricciardulli AG; Yang S; Feng X; Blom PWM ACS Appl Mater Interfaces; 2017 Aug; 9(30):25412-25417. PubMed ID: 28700202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]