These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 25483428)
1. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. Vo TN; Ekenseair AK; Spicer PP; Watson BM; Tzouanas SN; Roh TT; Mikos AG J Control Release; 2015 May; 205():25-34. PubMed ID: 25483428 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Watson BM; Vo TN; Tatara AM; Shah SR; Scott DW; Engel PS; Mikos AG Biomaterials; 2015 Oct; 67():286-96. PubMed ID: 26232878 [TBL] [Abstract][Full Text] [Related]
3. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Vo TN; Shah SR; Lu S; Tatara AM; Lee EJ; Roh TT; Tabata Y; Mikos AG Biomaterials; 2016 Mar; 83():1-11. PubMed ID: 26773659 [TBL] [Abstract][Full Text] [Related]
4. Structure-property evaluation of thermally and chemically gelling injectable hydrogels for tissue engineering. Ekenseair AK; Boere KW; Tzouanas SN; Vo TN; Kasper FK; Mikos AG Biomacromolecules; 2012 Sep; 13(9):2821-30. PubMed ID: 22881074 [TBL] [Abstract][Full Text] [Related]
5. Acellular mineral deposition within injectable, dual-gelling hydrogels for bone tissue engineering. Vo TN; Tatara AM; Santoro M; van den Beucken JJ; Leeuwenburgh SC; Jansen JA; Mikos AG J Biomed Mater Res A; 2017 Jan; 105(1):110-117. PubMed ID: 27557993 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Watson BM; Kasper FK; Engel PS; Mikos AG Biomacromolecules; 2014 May; 15(5):1788-96. PubMed ID: 24758298 [TBL] [Abstract][Full Text] [Related]
7. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
8. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
9. Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. Tzouanas SN; Ekenseair AK; Kasper FK; Mikos AG J Biomed Mater Res A; 2014 May; 102(5):1222-30. PubMed ID: 24458783 [TBL] [Abstract][Full Text] [Related]
10. Injectable, highly flexible, and thermosensitive hydrogels capable of delivering superoxide dismutase. Li Z; Wang F; Roy S; Sen CK; Guan J Biomacromolecules; 2009 Dec; 10(12):3306-16. PubMed ID: 19919046 [TBL] [Abstract][Full Text] [Related]
11. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration. Pehlivaner Kara MO; Ekenseair AK J Biomed Mater Res A; 2016 Oct; 104(10):2383-93. PubMed ID: 27153299 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Ekenseair AK; Boere KW; Tzouanas SN; Vo TN; Kasper FK; Mikos AG Biomacromolecules; 2012 Jun; 13(6):1908-15. PubMed ID: 22554407 [TBL] [Abstract][Full Text] [Related]
13. Thermogelling hydrogel charge and lower critical solution temperature influence cellular infiltration and tissue integration in an ex vivo cartilage explant model. Pearce HA; Swain JWR; Victor LH; Hogan KJ; Jiang EY; Bedell ML; Navara AM; Farsheed A; Kim YS; Guo JL; Hartgerink JD; Grande-Allen KJ; Mikos AG J Biomed Mater Res A; 2023 Jan; 111(1):15-34. PubMed ID: 36053984 [TBL] [Abstract][Full Text] [Related]
14. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Wang F; Li Z; Khan M; Tamama K; Kuppusamy P; Wagner WR; Sen CK; Guan J Acta Biomater; 2010 Jun; 6(6):1978-91. PubMed ID: 20004745 [TBL] [Abstract][Full Text] [Related]
15. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. Hayashi C; Hasegawa U; Saita Y; Hemmi H; Hayata T; Nakashima K; Ezura Y; Amagasa T; Akiyoshi K; Noda M J Cell Physiol; 2009 Jul; 220(1):1-7. PubMed ID: 19301257 [TBL] [Abstract][Full Text] [Related]
16. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143 [TBL] [Abstract][Full Text] [Related]
17. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Bichara DA; Bodugoz-Sentruk H; Ling D; Malchau E; Bragdon CR; Muratoglu OK Biomed Mater; 2014 Aug; 9(4):045012. PubMed ID: 25050611 [TBL] [Abstract][Full Text] [Related]
18. Effects of cellular parameters on the in vitro osteogenic potential of dual-gelling mesenchymal stem cell-laden hydrogels. Vo TN; Tabata Y; Mikos AG J Biomater Sci Polym Ed; 2016 Aug; 27(12):1277-90. PubMed ID: 27328947 [TBL] [Abstract][Full Text] [Related]
19. Effective Bone Regeneration Using Thermosensitive Poly(N-Isopropylacrylamide) Grafted Gelatin as Injectable Carrier for Bone Mesenchymal Stem Cells. Ren Z; Wang Y; Ma S; Duan S; Yang X; Gao P; Zhang X; Cai Q ACS Appl Mater Interfaces; 2015 Sep; 7(34):19006-15. PubMed ID: 26266480 [TBL] [Abstract][Full Text] [Related]
20. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Lewandowska-Łańcucka J; Fiejdasz S; Rodzik Ł; Kozieł M; Nowakowska M Biomed Mater; 2015 Feb; 10(1):015020. PubMed ID: 25668107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]