BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25483562)

  • 1. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry.
    Xu K; Chen Z; Zhou L; Zheng O; Wu X; Guo L; Qiu B; Lin Z; Chen G
    Anal Chem; 2015 Jan; 87(1):816-20. PubMed ID: 25483562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fluorescence assay for inorganic pyrophosphatase based on modulated aggregation of graphene quantum dots.
    Zhu X; Liu J; Peng H; Jiang J; Yu R
    Analyst; 2016 Jan; 141(1):251-5. PubMed ID: 26581179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence biosensor for inorganic pyrophosphatase activity.
    Zhang Y; Guo Y; Zhao M; Lin C; Lin Z; Luo F; Chen G
    Anal Bioanal Chem; 2017 Feb; 409(4):999-1005. PubMed ID: 27858125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T.
    Zhao H; Ma C; Chen M
    Mol Cell Probes; 2019 Feb; 43():29-33. PubMed ID: 30572018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Liu Y
    Mikrochim Acta; 2020 Nov; 187(12):672. PubMed ID: 33225389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu
    Sharma D; Wangoo N; Sharma RK
    Anal Chim Acta; 2024 May; 1305():342584. PubMed ID: 38677840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical strategy for pyrophosphatase detection Based on the peroxidase-like activity of G-quadruplex-Cu
    Wang Y; Wu Y; Liu W; Chu L; Liao Z; Guo W; Liu GQ; He X; Wang K
    Talanta; 2018 Feb; 178():491-497. PubMed ID: 29136853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.
    Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D
    Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion.
    Deng J; Jiang Q; Wang Y; Yang L; Yu P; Mao L
    Anal Chem; 2013 Oct; 85(19):9409-15. PubMed ID: 24016028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent and Colorimetric Dual-Readout Assay for Inorganic Pyrophosphatase with Cu(2+)-Triggered Oxidation of o-Phenylenediamine.
    Sun J; Wang B; Zhao X; Li ZJ; Yang X
    Anal Chem; 2016 Jan; 88(2):1355-61. PubMed ID: 26703206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(II)-Regulated On-Site Assembly of Highly Chemiluminescent Multifunctionalized Carbon Nanotubes for Inorganic Pyrophosphatase Activity Determination.
    Li F; Liu Y; Li Z; Li Q; Liu X; Cui H
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2903-2909. PubMed ID: 31851480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework.
    Hu S; Zhu L; Lam CW; Guo L; Lin Z; Qiu B; Wong KY; Chen G; Liu Z
    Mikrochim Acta; 2019 Feb; 186(3):190. PubMed ID: 30771090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a Turn Off-On-Off Fluorescent System Based on Competitive Coordination of Cu
    Zhao L; Zhao L; Miao Y; Liu C; Zhang C
    J Anal Methods Chem; 2016; 2016():4306838. PubMed ID: 27766179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Fenton chemistry in electrochemical determination of pyrophosphatase activity and fluoride.
    Luo P; Xie Y; He X; He Y; Wang X; Tan L
    Talanta; 2024 Jul; 274():125943. PubMed ID: 38564823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.
    Lin Y; Zhou Q; Li J; Shu J; Qiu Z; Lin Y; Tang D
    Anal Chem; 2016 Jan; 88(1):1030-8. PubMed ID: 26609552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assay of inorganic pyrophosphatase activity based on a fluorescence "turn-off" strategy using carbon quantum dots@Cu-MOF nanotubes.
    Zhang N; Zhao L; He M; Luo P; Tan L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121771. PubMed ID: 36027790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu(2+)-ABTS-H2O2 reaction.
    Zhang L; Li M; Qin Y; Chu Z; Zhao S
    Analyst; 2014 Dec; 139(23):6298-303. PubMed ID: 25316090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence sensor for Cu(II) in the serum sample based on click chemistry.
    Wang C; Lu L; Ye W; Zheng O; Qiu B; Lin Z; Guo L; Chen G
    Analyst; 2014 Feb; 139(3):656-9. PubMed ID: 24350327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive real-time assay of inorganic pyrophosphatase activity based on the fluorescent gold nanoclusters.
    Sun J; Yang F; Zhao D; Yang X
    Anal Chem; 2014 Aug; 86(15):7883-9. PubMed ID: 25030322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Dot Doping-Induced Photoluminescence for Facile, Label-Free, and Sensitive Pyrophosphatase Activity Assay and Inhibitor Screening.
    Tian Y; Hao L; Wang C; Yang X; Liu S
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30669286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.