These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 25483713)

  • 21. The electromechanical response of silicon nanowires to buckling mode transitions.
    Wong CC; Reboud J; Neuzil P; Soon J; Agarwal A; Balasubramanian N; Liao K
    Nanotechnology; 2010 Oct; 21(40):405505. PubMed ID: 20829571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long term stability of nanowire nanoelectronics in physiological environments.
    Zhou W; Dai X; Fu TM; Xie C; Liu J; Lieber CM
    Nano Lett; 2014 Mar; 14(3):1614-9. PubMed ID: 24479700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High yield formation of lipid bilayer shells around silicon nanowires in aqueous solution.
    Römhildt L; Gang A; Baraban L; Opitz J; Cuniberti G
    Nanotechnology; 2013 Sep; 24(35):355601. PubMed ID: 23917521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Devices from Bottom-Up Silicon Nanowires: A Review.
    Arjmand T; Legallais M; Nguyen TTT; Serre P; Vallejo-Perez M; Morisot F; Salem B; Ternon C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species.
    Patolsky F; Zheng G; Lieber CM
    Nat Protoc; 2006; 1(4):1711-24. PubMed ID: 17487154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of GOPS-Based Functionalization Process and Impact of Aptamer Grafting on the Si Nanonet FET Electrical Properties as First Steps towards Thrombin Electrical Detection.
    Vallejo-Perez M; Ternon C; Spinelli N; Morisot F; Theodorou C; Jayakumar G; Hellström PE; Mouis M; Rapenne L; Mescot X; Salem B; Stambouli V
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32942692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires.
    Dan Y; Seo K; Takei K; Meza JH; Javey A; Crozier KB
    Nano Lett; 2011 Jun; 11(6):2527-32. PubMed ID: 21598980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays.
    Kale VS; Prabhakar RR; Pramana SS; Rao M; Sow CH; Jinesh KB; Mhaisalkar SG
    Phys Chem Chem Phys; 2012 Apr; 14(13):4614-9. PubMed ID: 22354387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.
    Paska Y; Stelzner T; Christiansen S; Haick H
    ACS Nano; 2011 Jul; 5(7):5620-6. PubMed ID: 21648442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule-based gold nanowires and nanowire arrays.
    Zhou JC; Gao Y; Martinez-Molares AA; Jing X; Yan D; Lau J; Hamasaki T; Ozkan CS; Ozkan M; Hu E; Dunn B
    Small; 2008 Sep; 4(9):1507-15. PubMed ID: 18752207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the electrical properties of Si nanowire field-effect transistors by molecular engineering.
    Bashouti MY; Tung RT; Haick H
    Small; 2009 Dec; 5(23):2761-9. PubMed ID: 19771570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ex situ vapor phase boron doping of silicon nanowires using BBr3.
    Doerk GS; Lestari G; Liu F; Carraro C; Maboudian R
    Nanoscale; 2010 Jul; 2(7):1165-70. PubMed ID: 20648344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification.
    Wang X; Peng KQ; Pan XJ; Chen X; Yang Y; Li L; Meng XM; Zhang WJ; Lee ST
    Angew Chem Int Ed Engl; 2011 Oct; 50(42):9861-5. PubMed ID: 21905189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.
    Park JS; Kim KH; Hwang MS; Zhang X; Lee JM; Kim J; Song KD; No YS; Jeong KY; Cahoon JF; Kim SK; Park HG
    Nano Lett; 2017 Dec; 17(12):7731-7736. PubMed ID: 29148810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical observation of a thermo-morphic transition in a silicon nanowire.
    Choi SJ; Moon DI; Duarte JP; Ahn JH; Choi YK
    ACS Nano; 2012 Mar; 6(3):2378-84. PubMed ID: 22324745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photovoltaic properties of GaAsP core-shell nanowires on Si(001) substrate.
    Tchernycheva M; Rigutti L; Jacopin G; de Luna Bugallo A; Lavenus P; Julien FH; Timofeeva M; Bouravleuv AD; Cirlin GE; Dhaka V; Lipsanen H; Largeau L
    Nanotechnology; 2012 Jul; 23(26):265402. PubMed ID: 22699243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the growth mechanism of titanium disilicide nanonets.
    Zhou S; Xie J; Wang D
    ACS Nano; 2011 May; 5(5):4205-10. PubMed ID: 21506560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vertical nanowire heterojunction devices based on a clean Si/Ge interface.
    Chen L; Fung WY; Lu W
    Nano Lett; 2013; 13(11):5521-7. PubMed ID: 24134685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.