These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Quinlan NJ; Dooley PN Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700 [TBL] [Abstract][Full Text] [Related]
7. Investigation of spiral blood flow in a model of arterial stenosis. Paul MC; Larman A Med Eng Phys; 2009 Nov; 31(9):1195-203. PubMed ID: 19674925 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the effects of dynamic change in curvature and torsion on pulsatile flow in a helical tube. Selvarasu NK; Tafti DK J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763627 [TBL] [Abstract][Full Text] [Related]
10. Mechanical and biochemical aspects of leukocyte interactions with model vessel walls. McIntire LV; Eskin SG Kroc Found Ser; 1984; 16():209-19. PubMed ID: 6585482 [TBL] [Abstract][Full Text] [Related]
11. The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage. Teichmann J; Morgenstern A; Seebach J; Schnittler HJ; Werner C; Pompe T Biomaterials; 2012 Mar; 33(7):1959-69. PubMed ID: 22154622 [TBL] [Abstract][Full Text] [Related]
12. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
13. Physiological flow analysis in significant human coronary artery stenoses. Banerjee RK; Back LH; Back MR; Cho YI Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911 [TBL] [Abstract][Full Text] [Related]
14. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors. Vozzi F; Bianchi F; Ahluwalia A; Domenici C Biotechnol J; 2014 Jan; 9(1):146-54. PubMed ID: 23959971 [TBL] [Abstract][Full Text] [Related]
15. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Teodósio JS; Simões M; Melo LF; Mergulhão FJ Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamics of ulcerated plaques: before and after. Cummins M; Rossmann JS J Biomech Eng; 2010 Oct; 132(10):104503. PubMed ID: 20887021 [TBL] [Abstract][Full Text] [Related]
17. Bend sweep angle and Reynolds number effects on hemodynamics of s-shaped arteries. Niazmand H; Rajabi Jaghargh E Ann Biomed Eng; 2010 Sep; 38(9):2817-28. PubMed ID: 20428951 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters. Rahbar E; Mori D; Moore JE J Vasc Interv Radiol; 2011 Jun; 22(6):835-42. PubMed ID: 21414805 [TBL] [Abstract][Full Text] [Related]
19. Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling. Yalcin HC Exp Biol Med (Maywood); 2014 Dec; 239(12):1644-52. PubMed ID: 25169937 [TBL] [Abstract][Full Text] [Related]
20. A mathematical model for the dissolution of non-occlusive blood clots in fast tangential blood flow. Sersa I; Tratar G; Mikac U; Blinc A Biorheology; 2007; 44(1):1-16. PubMed ID: 17502685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]