BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25483919)

  • 21. Anticancer activity of graphene oxide-reduced graphene oxide-silver nanoparticle composites.
    Kavinkumar T; Varunkumar K; Ravikumar V; Manivannan S
    J Colloid Interface Sci; 2017 Nov; 505():1125-1133. PubMed ID: 28704918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of SERS-Active Porous Ag Substrates for the Effective Detection of Pyrene in Water.
    Capaccio A; Sasso A; Rusciano G
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.
    Wang L; Hou X; Li J; Liu S; Guo Y
    J Sep Sci; 2015 Jul; 38(14):2439-46. PubMed ID: 25931422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons.
    Jones CL; Bantz KC; Haynes CL
    Anal Bioanal Chem; 2009 May; 394(1):303-11. PubMed ID: 19263043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics.
    Qian Z; Cheng Y; Zhou X; Wu J; Xu G
    J Colloid Interface Sci; 2013 May; 397():103-7. PubMed ID: 23425548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomic force microscopy and surface-enhanced Raman scattering detection of DNA based on DNA-nanoparticle complexes.
    Sun L; Sun Y; Xu F; Zhang Y; Yang T; Guo C; Liu Z; Li Z
    Nanotechnology; 2009 Mar; 20(12):125502. PubMed ID: 19420468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple luminescence method for estimation of benzo[a]pyrene in a complex mixture of polycyclic aromatic hydrocarbons without a pre-separation procedure.
    Patra D
    Luminescence; 2003; 18(2):97-102. PubMed ID: 12687629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection.
    Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H
    Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cetyltrimethylammonium Bromide-Coated Fe₃O₄ Magnetic Nanoparticles for Analysis of 15 Trace Polycyclic Aromatic Hydrocarbons in Aquatic Environments by Ultraperformance, Liquid Chromatography With Fluorescence Detection.
    Wang H; Zhao X; Meng W; Wang P; Wu F; Tang Z; Han X; Giesy JP
    Anal Chem; 2015 Aug; 87(15):7667-75. PubMed ID: 26153060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.
    Zhang H; Fan X; Quan X; Chen S; Yu H
    Environ Sci Technol; 2011 Jul; 45(13):5731-6. PubMed ID: 21663048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS).
    Péron O; Rinnert E; Lehaitre M; Crassous P; Compère C
    Talanta; 2009 Jul; 79(2):199-204. PubMed ID: 19559865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by β-cyclodextrin-modified gold nanoparticles.
    Yu Z; Grasso MF; Sorensen HH; Zhang P
    Mikrochim Acta; 2019 May; 186(6):391. PubMed ID: 31152234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene oxide in cetyltrimethylammonium bromide (CTAB) reverse micelle: a befitting soft nanocomposite for improving efficiency of surface-active enzymes.
    Das K; Maiti S; Ghosh M; Mandal D; Das PK
    J Colloid Interface Sci; 2013 Apr; 395():111-8. PubMed ID: 23374433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.
    Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W
    Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galvanic displacement-induced codeposition of reduced-graphene-oxide/silver on alloy fibers for non-destructive SPME@SERS analysis of antibiotics.
    Cui J; Chen S; Ma X; Shao H; Zhan J
    Mikrochim Acta; 2018 Dec; 186(1):19. PubMed ID: 30552513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors.
    Bhunia SK; Jana NR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20085-92. PubMed ID: 25296393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Preparation and property evaluation of graphene oxide based silver nanoparticles composite materials].
    Shen Y; He J; Zhang Y; Shen Y; Zhang L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Apr; 31(2):357-60. PubMed ID: 25039142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode.
    Kaur B; Pandiyan T; Satpati B; Srivastava R
    Colloids Surf B Biointerfaces; 2013 Nov; 111():97-106. PubMed ID: 23777794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of polycyclic aromatic hydrocarbons in water.
    Saitoh T; Itoh H; Hiraide M
    Talanta; 2009 Jul; 79(2):177-82. PubMed ID: 19559861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries.
    Nithya C; Gopukumar S
    ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.