BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 25484063)

  • 1. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV.
    Paul M; Reljic R; Klein K; Drake PM; van Dolleweerd C; Pabst M; Windwarder M; Arcalis E; Stoger E; Altmann F; Cosgrove C; Bartolf A; Baden S; Ma JK
    MAbs; 2014; 6(6):1585-97. PubMed ID: 25484063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a monoclonal antibody against enterotoxigenic
    Teh AY; Cavacini L; Hu Y; Kumru OS; Xiong J; Bolick DT; Joshi SB; Grünwald-Gruber C; Altmann F; Klempner M; Guerrant RL; Volkin DB; Wang Y; Ma JK
    Gut Microbes; 2021; 13(1):1-14. PubMed ID: 33439092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplifying the synthesis of SIgA: combination of dIgA and rhSC using affinity chromatography.
    Moldt B; Saye-Francisco K; Schultz N; Burton DR; Hessell AJ
    Methods; 2014 Jan; 65(1):127-32. PubMed ID: 23811333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretory IgA antibodies from plants.
    Wycoff KL
    Curr Pharm Des; 2005; 11(19):2429-37. PubMed ID: 16026297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant expression of chicken secretory antibodies derived from combinatorial libraries.
    Wieland WH; Lammers A; Schots A; Orzáez DV
    J Biotechnol; 2006 Apr; 122(3):382-91. PubMed ID: 16448714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IgA tetramerization improves target breadth but not peak potency of functionality of anti-influenza virus broadly neutralizing antibody.
    Saito S; Sano K; Suzuki T; Ainai A; Taga Y; Ueno T; Tabata K; Saito K; Wada Y; Ohara Y; Takeyama H; Odagiri T; Kageyama T; Ogawa-Goto K; Multihartina P; Setiawaty V; Pangesti KNA; Hasegawa H
    PLoS Pathog; 2019 Jan; 15(1):e1007427. PubMed ID: 30605488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly, secretion, and vacuolar delivery of a hybrid immunoglobulin in plants.
    Frigerio L; Vine ND; Pedrazzini E; Hein MB; Wang F; Ma JK; Vitale A
    Plant Physiol; 2000 Aug; 123(4):1483-94. PubMed ID: 10938364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation.
    Heystek HC; Moulon C; Woltman AM; Garonne P; van Kooten C
    J Immunol; 2002 Jan; 168(1):102-7. PubMed ID: 11751952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-derived secretory component forms secretory IgA with shiga toxin 1-specific dimeric IgA produced by mouse cells and whole plants.
    Nakanishi K; Morikane S; Hosokawa N; Kajihara Y; Kurohane K; Niwa Y; Kobayashi H; Imai Y
    Plant Cell Rep; 2019 Feb; 38(2):161-172. PubMed ID: 30506369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody.
    Floss DM; Sack M; Arcalis E; Stadlmann J; Quendler H; Rademacher T; Stoger E; Scheller J; Fischer R; Conrad U
    Plant Biotechnol J; 2009 Dec; 7(9):899-913. PubMed ID: 19843249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of epitopes of human secretory component on free secretory component, secretory IgA, and membrane-associated secretory component.
    Woodard CS; Splawski JB; Goldblum RM; Denney RM
    J Immunol; 1984 Oct; 133(4):2116-25. PubMed ID: 6206152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of antigen to nasal-associated lymphoid tissue microfold cells through secretory IgA targeting local dendritic cells confers protective immunity.
    Rochereau N; Pavot V; Verrier B; Jospin F; Ensinas A; Genin C; Corthésy B; Paul S
    J Allergy Clin Immunol; 2016 Jan; 137(1):214-222.e2. PubMed ID: 26414879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of an anti-(hepatitis B surface antigen) glycosylated mouse antibody in transgenic tobacco (Nicotiana tabacum) plants and its use in the immunopurification of its target antigen.
    Ramírez N; Rodríguez M; Ayala M; Cremata J; Pérez M; Martínez A; Linares M; Hevia Y; Páez R; Valdés R; Gavilondo JV; Selman-Housein G
    Biotechnol Appl Biochem; 2003 Dec; 38(Pt 3):223-30. PubMed ID: 12797866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposite immune reactivity of serum IgG and secretory IgA to conformational recombinant proteins mimicking V1/V2 domains of three different HIV type 1 subtypes depending on glycosylation.
    Granados-Gonzalez V; Claret J; Berlier W; Vincent N; Urcuqui-Inchima S; Lucht F; Defontaine C; Pinter A; Genin C; Riffard S
    AIDS Res Hum Retroviruses; 2008 Feb; 24(2):289-99. PubMed ID: 18260782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140.
    Go EP; Herschhorn A; Gu C; Castillo-Menendez L; Zhang S; Mao Y; Chen H; Ding H; Wakefield JK; Hua D; Liao HX; Kappes JC; Sodroski J; Desaire H
    J Virol; 2015 Aug; 89(16):8245-57. PubMed ID: 26018173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of secretory IgA by DC-SIGN: implications for immune surveillance in the intestine.
    Baumann J; Park CG; Mantis NJ
    Immunol Lett; 2010 Jun; 131(1):59-66. PubMed ID: 20362001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The HIV glycan shield as a target for broadly neutralizing antibodies.
    Doores KJ
    FEBS J; 2015 Dec; 282(24):4679-91. PubMed ID: 26411545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunoglobulin A N-glycosylation Presents Important Body Fluid-specific Variations in Lactating Mothers.
    Goonatilleke E; Smilowitz JT; Mariño KV; German BJ; Lebrilla CB; Barboza M
    Mol Cell Proteomics; 2019 Nov; 18(11):2165-2177. PubMed ID: 31409668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of Clostridium difficile toxin A to human milk secretory component.
    Dallas SD; Rolfe RD
    J Med Microbiol; 1998 Oct; 47(10):879-88. PubMed ID: 9788811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monomeric IgA can be produced in planta as efficient as IgG, yet receives different N-glycans.
    Westerhof LB; Wilbers RH; van Raaij DR; Nguyen DL; Goverse A; Henquet MG; Hokke CH; Bosch D; Bakker J; Schots A
    Plant Biotechnol J; 2014 Dec; 12(9):1333-42. PubMed ID: 25196296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.