These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25484279)

  • 21. Mycothiol: a target for potentiation of rifampin and other antibiotics against Mycobacterium tuberculosis.
    Hernick M
    Expert Rev Anti Infect Ther; 2013 Jan; 11(1):49-67. PubMed ID: 23428102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemistry and diversity of pyridoxal-5'-phosphate dependent enzymes.
    Phillips RS
    Biochim Biophys Acta; 2015 Sep; 1854(9):1167-74. PubMed ID: 25615531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of phosphoserine aminotransferase from Mycobacterium tuberculosis.
    Coulibaly F; Lassalle E; Baker HM; Baker EN
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):553-63. PubMed ID: 22525753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The enzymes of the transsulfuration pathways: active-site characterizations.
    Aitken SM; Lodha PH; Morneau DJ
    Biochim Biophys Acta; 2011 Nov; 1814(11):1511-7. PubMed ID: 21435402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of an allosteric anion-binding site on O-acetylserine sulfhydrylase: structure of the enzyme with chloride bound.
    Burkhard P; Tai CH; Jansonius JN; Cook PF
    J Mol Biol; 2000 Oct; 303(2):279-86. PubMed ID: 11023792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-guided design of novel thiazolidine inhibitors of O-acetyl serine sulfhydrylase from Mycobacterium tuberculosis.
    Poyraz O; Jeankumar VU; Saxena S; Schnell R; Haraldsson M; Yogeeswari P; Sriram D; Schneider G
    J Med Chem; 2013 Aug; 56(16):6457-66. PubMed ID: 23879381
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine and homocysteine synthesis in Saccharomycopsis lipolytica; identification and characterization of two cysteine synthases.
    Morzycka E; Paszewski A
    Acta Biochim Pol; 1982; 29(1-2):81-93. PubMed ID: 7180327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP synthase in mycobacteria: special features and implications for a function as drug target.
    Lu P; Lill H; Bald D
    Biochim Biophys Acta; 2014 Jul; 1837(7):1208-18. PubMed ID: 24513197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PLP-dependent enzymes as potential drug targets for protozoan diseases.
    Kappes B; Tews I; Binter A; Macheroux P
    Biochim Biophys Acta; 2011 Nov; 1814(11):1567-76. PubMed ID: 21884827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Histidine-152 in cofactor orientation in the PLP-dependent O-acetylserine sulfhydrylase reaction.
    Tai CH; Rabeh WM; Guan R; Schnackerz KD; Cook PF
    Arch Biochem Biophys; 2008 Apr; 472(2):115-25. PubMed ID: 18275838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A subfamily of PLP-dependent enzymes specialized in handling terminal amines.
    Schiroli D; Peracchi A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1200-11. PubMed ID: 25770684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel inhibitor of indole-3-glycerol phosphate synthase with activity against multidrug-resistant Mycobacterium tuberculosis.
    Shen H; Wang F; Zhang Y; Huang Q; Xu S; Hu H; Yue J; Wang H
    FEBS J; 2009 Jan; 276(1):144-54. PubMed ID: 19032598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of Mycobacterium tuberculosispyridoxine 5'-phosphate oxidase and its complexes with flavin mononucleotide and pyridoxal 5'-phosphate.
    Biswal BK; Cherney MM; Wang M; Garen C; James MN
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1492-9. PubMed ID: 16239726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. O-phospho-L-serine and the thiocarboxylated sulfur carrier protein CysO-COSH are substrates for CysM, a cysteine synthase from Mycobacterium tuberculosis.
    O'Leary SE; Jurgenson CT; Ealick SE; Begley TP
    Biochemistry; 2008 Nov; 47(44):11606-15. PubMed ID: 18842002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of a functionally active Mycobacterium tuberculosis prephenate dehydrogenase.
    Xu S; Yang Y; Jin R; Zhang M; Wang H
    Protein Expr Purif; 2006 Oct; 49(2):151-8. PubMed ID: 16889979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pyrimidine salvage pathway in Mycobacterium tuberculosis.
    Villela AD; Sánchez-Quitian ZA; Ducati RG; Santos DS; Basso LA
    Curr Med Chem; 2011; 18(9):1286-98. PubMed ID: 21366534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrimidin-2(1H)-ones based inhibitors of Mycobacterium tuberculosis orotate phosphoribosyltransferase.
    Breda A; Machado P; Rosado LA; Souto AA; Santos DS; Basso LA
    Eur J Med Chem; 2012 Aug; 54():113-22. PubMed ID: 22608674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate.
    di Salvo ML; Nogués I; Parroni A; Tramonti A; Milano T; Pascarella S; Contestabile R
    Biochim Biophys Acta; 2015 Sep; 1854(9):1160-6. PubMed ID: 25655354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.