BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25484296)

  • 1. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing.
    Jevtić P; Levy DL
    Curr Biol; 2015 Jan; 25(1):45-52. PubMed ID: 25484296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis.
    Jevtić P; Levy DL
    Sci Rep; 2017 Aug; 7(1):7908. PubMed ID: 28801588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus.
    Jukam D; Kapoor RR; Straight AF; Skotheim JM
    Curr Biol; 2021 Oct; 31(19):4269-4281.e8. PubMed ID: 34388374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):675-86. PubMed ID: 6183003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.
    Iwao Y; Uchida Y; Ueno S; Yoshizaki N; Masui Y
    Dev Growth Differ; 2005 Jun; 47(5):283-94. PubMed ID: 16026537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titration of four replication factors is essential for the Xenopus laevis midblastula transition.
    Collart C; Allen GE; Bradshaw CR; Smith JC; Zegerman P
    Science; 2013 Aug; 341(6148):893-6. PubMed ID: 23907533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos.
    Clute P; Masui Y
    Dev Biol; 1995 Oct; 171(2):273-85. PubMed ID: 7556912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development.
    Jevtić P; Mukherjee RN; Chen P; Levy DL
    PLoS One; 2019; 14(4):e0215740. PubMed ID: 31009515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio.
    Strong IJT; Lei X; Chen F; Yuan K; O'Farrell PH
    PLoS Biol; 2020 Oct; 18(10):e3000891. PubMed ID: 33090988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition.
    Amodeo AA; Jukam D; Straight AF; Skotheim JM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):E1086-95. PubMed ID: 25713373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos.
    Carter AD; Sible JC
    Mech Dev; 2003 Mar; 120(3):315-23. PubMed ID: 12591601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential role for transcription before the MBT in Xenopus laevis.
    Skirkanich J; Luxardi G; Yang J; Kodjabachian L; Klein PS
    Dev Biol; 2011 Sep; 357(2):478-91. PubMed ID: 21741375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle transition in early embryonic development of Xenopus laevis.
    Masui Y; Wang P
    Biol Cell; 1998 Nov; 90(8):537-48. PubMed ID: 10068998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition.
    Zhang M; Skirkanich J; Lampson MA; Klein PS
    Adv Exp Med Biol; 2017; 953():441-487. PubMed ID: 27975277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense knockdown of cyclin E does not affect the midblastula transition in Xenopus laevis embryos.
    Slevin MK; Lyons-Levy G; Weeks DL; Hartley RS
    Cell Cycle; 2005 Oct; 4(10):1396-402. PubMed ID: 16131839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.
    Sheets MD
    Curr Top Dev Biol; 2015; 113():233-70. PubMed ID: 26358875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.
    Kerns SL; Schultz KM; Barry KA; Thorne TM; McGarry TJ
    PLoS One; 2012; 7(5):e38009. PubMed ID: 22662261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.