These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25485075)

  • 1. On growth and form of Bacillus subtilis biofilms.
    Dervaux J; Magniez JC; Libchaber A
    Interface Focus; 2014 Dec; 4(6):20130051. PubMed ID: 25485075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
    Rizzi A; Roy S; Bellenger JP; Beauregard PB
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
    Yannarell SM; Grandchamp GM; Chen SY; Daniels KE; Shank EA
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 30833350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic di-AMP Acts as an Extracellular Signal That Impacts
    Townsley L; Yannarell SM; Huynh TN; Woodward JJ; Shank EA
    mBio; 2018 Mar; 9(2):. PubMed ID: 29588402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.
    Kesel S; Grumbein S; Gümperlein I; Tallawi M; Marel AK; Lieleg O; Opitz M
    Appl Environ Microbiol; 2016 Apr; 82(8):2424-2432. PubMed ID: 26873313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
    Powers MJ; Sanabria-Valentín E; Bowers AA; Shank EA
    J Bacteriol; 2015 Jul; 197(13):2129-2138. PubMed ID: 25825426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Biofilm Aging and Dispersal in
    Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R
    J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity in surface sensing suggests a division of labor in
    Armbruster CR; Lee CK; Parker-Gilham J; de Anda J; Xia A; Zhao K; Murakami K; Tseng BS; Hoffman LR; Jin F; Harwood CS; Wong GC; Parsek MR
    Elife; 2019 Jun; 8():. PubMed ID: 31180327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm streamer growth dynamics in various microfluidic channels.
    Zhang J; Dong F; Liu S; Zhang D; Wang X
    Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic pressure induced by extracellular matrix drives Bacillus subtilis biofilms' self-healing.
    Dong F; Liu S; Zhang D; Zhang J; Wang X; Zhao H
    Comput Biol Chem; 2022 Apr; 97():107632. PubMed ID: 35066439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofilm Formation Drives Transfer of the Conjugative Element ICE
    Lécuyer F; Bourassa JS; Gélinas M; Charron-Lamoureux V; Burrus V; Beauregard PB
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30258041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species.
    Morikawa M
    J Biosci Bioeng; 2006 Jan; 101(1):1-8. PubMed ID: 16503283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms.
    Zhang W; Dai W; Tsai SM; Zehnder SM; Sarntinoranont M; Angelini TE
    Soft Matter; 2015 May; 11(18):3612-7. PubMed ID: 25797701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microfluidic channel geometry on Bacillus subtilis biofilm formation.
    Liu S; Dong F; Zhang D; Zhang J; Wang X
    Biomed Microdevices; 2022 Jan; 24(1):11. PubMed ID: 35072796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.
    Deng Q; Pu Y; Sun L; Wang Y; Liu Y; Wang R; Liao J; Xu D; Liu Y; Ye R; Fang Z; Gooneratne R
    Food Res Int; 2017 Dec; 102():8-13. PubMed ID: 29196015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm-associated toxin and extracellular protease cooperatively suppress competitors in Bacillus subtilis biofilms.
    Kobayashi K; Ikemoto Y
    PLoS Genet; 2019 Oct; 15(10):e1008232. PubMed ID: 31622331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the Bacillus subtilis biofilm expansion rate on phenotypes and the morphology under different growing conditions.
    Wang X; Kong Y; Zhao H; Yan X
    Dev Growth Differ; 2019 Sep; 61(7-8):431-443. PubMed ID: 31565797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of Bacillus subtilis biofilm growth on agar plate by diffusion-reaction based continuum model.
    Zhang X; Wang X; Nie K; Li M; Sun Q
    Phys Biol; 2016 Jul; 13(4):046002. PubMed ID: 27434099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability.
    Kampf J; Gerwig J; Kruse K; Cleverley R; Dormeyer M; Grünberger A; Kohlheyer D; Commichau FM; Lewis RJ; Stülke J
    mBio; 2018 Sep; 9(5):. PubMed ID: 30181249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topography and Expansion Patterns at the Biofilm-Agar Interface in
    Gingichashvili S; Feuerstein O; Steinberg D
    Microorganisms; 2020 Dec; 9(1):. PubMed ID: 33396528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.