These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25485168)

  • 1. Task-Space Motion Planning of MRI-Actuated Catheters for Catheter Ablation of Atrial Fibrillation.
    Greigarn T; Cavuşoğlu MC
    Rep U S; 2014 Sep; 2014():3476-3482. PubMed ID: 25485168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jacobian-Based Task-Space Motion Planning for MRI-Actuated Continuum Robots.
    Greigarn T; Poirot NL; Xu X; Çavuşoğlu MC
    IEEE Robot Autom Lett; 2019 Jan; 4(1):145-152. PubMed ID: 30547093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State Estimation for MRI-Actuated Catheters via Catadioptric Stereo Camera.
    Greigarn T; Jackson R; Çavuşoğlu MC
    Rep U S; 2018 Oct; 2018():1795-1800. PubMed ID: 31435483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Validation of the Three-Dimensional Deflection of an MRI-Compatible Magnetically Actuated Steerable Catheter.
    Liu T; Poirot NL; Franson D; Seiberlich N; Griswold MA; Cavusoglu MC
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2142-54. PubMed ID: 26731519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iterative Jacobian-Based Inverse Kinematics and Open-Loop Control of an MRI-Guided Magnetically Actuated Steerable Catheter System.
    Liu T; Jackson R; Franson D; Poirot NL; Criss RK; Seiberlich N; Griswold MA; Çavuşoğlu MC
    IEEE ASME Trans Mechatron; 2017 Aug; 22(4):1765-1776. PubMed ID: 29255343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a Magnetic Resonance Imaging Guided Magnetically Actuated Steerable Catheter.
    Liu T; Lombard Poirot N; Greigarn T; Cenk Çavuşoğlu M
    J Med Device; 2017 Jun; 11(2):0210041-2100411. PubMed ID: 28690711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Validation of the Pseudo-Rigid-Body Model of the MRI-Actuated Catheter.
    Greigarn T; Jackson R; Liu T; Çavuşoğlu MC
    IEEE Int Conf Robot Autom; 2017; 2017():3600-3605. PubMed ID: 29218235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Dynamic Response of an MRI-Guided Magnetically-Actuated Steerable Catheter System.
    Tuna EE; Liu T; Jackson RC; Poirot NL; Russell M; Çavuşoğlu MC
    Rep U S; 2018 Oct; 2018():4927-4934. PubMed ID: 30643664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.
    Wang W; Viswanathan AN; Damato AL; Chen Y; Tse Z; Pan L; Tokuda J; Seethamraju RT; Dumoulin CL; Schmidt EJ; Cormack RA
    Med Phys; 2015 Dec; 42(12):7114-21. PubMed ID: 26632065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contact Stability and Contact Safety of a Magnetic Resonance Imaging-Guided Robotic Catheter Under Heart Surface Motion.
    Hao R; Erdem Tuna E; Çavuşoğlu MC
    J Dyn Syst Meas Control; 2021 Jul; 143(7):071010. PubMed ID: 33994580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.
    Ipsen S; Blanck O; Oborn B; Bode F; Liney G; Hunold P; Rades D; Schweikard A; Keall PJ
    Med Phys; 2014 Dec; 41(12):120702. PubMed ID: 25471947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.
    Liu T; Cavuşoğlu MC
    IEEE Int Conf Robot Autom; 2014; 2014():4393-4398. PubMed ID: 25328804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-Rigid-Body Model and Kinematic Analysis of MRI-Actuated Catheters.
    Greigarn T; Çavuşoğlu MC
    IEEE Int Conf Robot Autom; 2015 May; 2015():2263-2243. PubMed ID: 26413380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a force-reflecting robotic platform for cardiac catheter navigation.
    Park JW; Choi J; Pak HN; Song SJ; Lee JC; Park Y; Shin SM; Sun K
    Artif Organs; 2010 Nov; 34(11):1034-9. PubMed ID: 21092046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system.
    Gang ES; Nguyen BL; Shachar Y; Farkas L; Farkas L; Marx B; Johnson D; Fishbein MC; Gaudio C; Kim SJ
    Circ Arrhythm Electrophysiol; 2011 Oct; 4(5):770-7. PubMed ID: 21690463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic navigation for catheter ablation: benefits and challenges.
    Aagaard P; Natale A; Di Biase L
    Expert Rev Med Devices; 2015 Jul; 12(4):457-69. PubMed ID: 26076371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic and magnetic navigation for atrial fibrillation ablation. How and why?
    Pappone C; Augello G; Gugliotta F; Santinelli V
    Expert Rev Med Devices; 2007 Nov; 4(6):885-94. PubMed ID: 18035953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Probabilistic Approach for Contact Stability and Contact Safety Analysis of Robotic Intracardiac Catheter.
    Hao R; Çavuşoğlu MC
    J Dyn Syst Meas Control; 2021 Sep; 143(9):094502. PubMed ID: 34334808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic ablation of atrial fibrillation.
    Wutzler A; Wolber T; Haverkamp W; Boldt LH
    J Vis Exp; 2015 May; (99):e52560. PubMed ID: 26066040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote control catheter navigation: options for guidance under MRI.
    Muller L; Saeed M; Wilson MW; Hetts SW
    J Cardiovasc Magn Reson; 2012 Jun; 14(1):33. PubMed ID: 22655535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.