These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25485194)

  • 1. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlea-inspired speech recognition interface.
    Russo M; Stella M; Sikora M; Šarić M
    Med Biol Eng Comput; 2019 Jun; 57(6):1393-1403. PubMed ID: 30830542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on biometric method of heart sound signal based on GMM].
    Zhong L; Wan J; Huang Z; Guo X; Duan Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Mar; 37(2):92-5, 99. PubMed ID: 23777060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Speaker Identification System Using the Responses from a Model of the Auditory Periphery.
    Islam MA; Jassim WA; Cheok NS; Zilany MS
    PLoS One; 2016; 11(7):e0158520. PubMed ID: 27392046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.
    Jafari A; Almasganj F; Bidhendi MN
    Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stressed Speech Emotion Recognition Using Teager Energy and Spectral Feature Fusion with Feature Optimization.
    Bandela SR; Siva Priyanka S; Sunil Kumar K; Vijay Bhaskar Reddy Y; Berhanu AA
    Comput Intell Neurosci; 2023; 2023():5765760. PubMed ID: 37868755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
    Selvaraj L; Ganesan B
    ScientificWorldJournal; 2014; 2014():270576. PubMed ID: 25478588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognizing the message and the messenger: biomimetic spectral analysis for robust speech and speaker recognition.
    Nemala SK; Patil K; Elhilali M
    Int J Speech Technol; 2013; 16(3):313-322. PubMed ID: 26412979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cepstral representation of speech motivated by time-frequency masking: an application to speech recognition.
    Aikawa K; Singer H; Kawahara H; Tohkura Y
    J Acoust Soc Am; 1996 Jul; 100(1):603-14. PubMed ID: 8675851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An empirical mode decomposition based hidden Markov model approach for detection of Bryde's whale pulse calls.
    Ogundile OO; Usman AM; Versfeld DJJ
    J Acoust Soc Am; 2020 Feb; 147(2):EL125. PubMed ID: 32113315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histogram equalization with Bayesian estimation for noise robust speech recognition.
    Suh Y; Kim H
    J Acoust Soc Am; 2018 Feb; 143(2):677. PubMed ID: 29495754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory-model based robust feature selection for speech recognition.
    Koniaris C; Kuropatwinski M; Kleijn WB
    J Acoust Soc Am; 2010 Feb; 127(2):EL73-9. PubMed ID: 20136182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of COVID-19 Resulting Cough Using Formants and Automatic Speech Recognition System.
    Zealouk O; Satori H; Hamidi M; Laaidi N; Salek A; Satori K
    J Voice; 2023 Nov; 37(6):971.e9-971.e16. PubMed ID: 34256982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.
    Asadpour V; Towhidkhah F; Homayounpour MM
    Med Biol Eng Comput; 2006 Oct; 44(10):919-30. PubMed ID: 17031716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noisy speech recognition using de-noised multiresolution analysis acoustic features.
    Chan CP; Ching PC; Lee T
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2567-74. PubMed ID: 11757946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Extraction Methods Proposed for Speech Recognition Are Effective on Road Condition Monitoring Using Smartphone Inertial Sensors.
    Cabral FS; Fukai H; Tamura S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31395828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.