These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2548524)

  • 41. The unfolding of the cytochromes c in methanol and acid.
    Drew HR; Dickerson RE
    J Biol Chem; 1978 Dec; 253(23):8420-7. PubMed ID: 30777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of methionine 230 in intramolecular electron transfer between the oxyferryl heme and tryptophan 191 in cytochrome c peroxidase compound II.
    Liu RQ; Miller MA; Han GW; Hahm S; Geren L; Hibdon S; Kraut J; Durham B; Millett F
    Biochemistry; 1994 Jul; 33(29):8678-85. PubMed ID: 8038157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the iron-sulfur cluster of aconitase by natural and magnetic circular dichroism.
    Piszkiewicz D; Gawron O; Sutherland JC
    Biochemistry; 1981 Jan; 20(2):363-6. PubMed ID: 7470486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The nature of the thermal equilibrium affecting the iron coordination of ferric cytochrome c.
    Taler G; Schejter A; Navon G; Vig I; Margoliash E
    Biochemistry; 1995 Oct; 34(43):14209-12. PubMed ID: 7578019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-potential iron-sulfur proteins and their possible site of electron transfer.
    Aprahamian G; Feinberg BA
    Biochemistry; 1981 Feb; 20(4):915-9. PubMed ID: 6260144
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of unfolding and folding of horse heart ferricytochrome c with urea.
    Myer YP; Pande A; Saturno AF
    J Biol Chem; 1981 Feb; 256(4):1576-81. PubMed ID: 6257677
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron-transfer from cytochrome c to ascorbate oxidase and its type 2 copper-depleted derivatives.
    Sakurai T
    J Inorg Biochem; 1994 Aug; 55(3):193-202. PubMed ID: 8057089
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of flash-induced electron transfer between bacterial reaction centres, mitochondrial ubiquinol:cytochrome c oxidoreductase and cytochrome c.
    Zhu QS; Van der Wal HN; Van Grondelle R; Berden JA
    Biochim Biophys Acta; 1983 Oct; 725(1):121-30. PubMed ID: 6313049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The oxidation of ubiquinol by the isolated Rieske iron-sulfur protein in solution.
    DegliEsposti M; Ballester F; Timoneda J; Crimi M; Lenaz G
    Arch Biochem Biophys; 1990 Dec; 283(2):258-65. PubMed ID: 2177322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Axial ligand replacement in horse heart cytochrome c by semisynthesis.
    Raphael AL; Gray HB
    Proteins; 1989; 6(3):338-40. PubMed ID: 2560194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of electron transfer between cytochrome c and laccase.
    Sakurai T
    Biochemistry; 1992 Oct; 31(40):9844-7. PubMed ID: 1327127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics of carbon monoxide binding and electron transfer by cytochrome c polymers.
    Dupré S; Brunori M; Wilson MT; Greenwood C
    Biochem J; 1974 Jul; 141(1):299-304. PubMed ID: 4375972
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron transfer reactions of high-potential iron-sulfur proteins and c-type cytochromes.
    Mizrahi IA; Cusanovich MA
    Biochemistry; 1980 Oct; 19(21):4733-7. PubMed ID: 6252957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A stopped-flow study of the reaction of reduced cytochrome oxidase with oxygen.
    Balny C; Anni H; Yonetani T
    J Inorg Biochem; 1985; 23(3-4):253-8. PubMed ID: 2991464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cytochrome c6 from Monoraphidium braunii. A cytochrome with an unusual heme axial coordination.
    Campos AP; Aguiar AP; Hervás M; Regalla M; Navarro JA; Ortega JM; Xavier AV; De La Rosa MA; Teixeira M
    Eur J Biochem; 1993 Aug; 216(1):329-41. PubMed ID: 8396033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase.
    Gilmour R; Goodhew CF; Pettigrew GW; Prazeres S; Moura JJ; Moura I
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):907-14. PubMed ID: 8010977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new spatial structure for the axial methionine observed in cytochrome c5 from Pseudomonas mendocina. Correlations with the electronic structure of heme c.
    Senn H; Wüthrich K
    Biochim Biophys Acta; 1983 Sep; 747(1-2):16-25. PubMed ID: 6309240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformational isomerism and effective redox geometry in the oxidation of heme proteins by alkyl halides, cytochrome c, and cytochrome oxidase.
    Castro CE; Bartnicki EW
    Biochemistry; 1975 Feb; 14(3):498-503. PubMed ID: 234244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.