These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25485380)

  • 1. Incorporating privileged genetic information for fundus image based glaucoma detection.
    Duan L; Xu Y; Li W; Chen L; Wing DW; Wong TY; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):204-11. PubMed ID: 25485380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glaucoma risk index: automated glaucoma detection from color fundus images.
    Bock R; Meier J; Nyúl LG; Hornegger J; Michelson G
    Med Image Anal; 2010 Jun; 14(3):471-81. PubMed ID: 20117959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRMR optimized classification for automatic glaucoma diagnosis.
    Zhang Z; Kwoh CK; Liu J; Yin F; Wirawan A; Cheung C; Baskaran M; Aung T; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6228-31. PubMed ID: 22255762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs.
    Chakrabarty L; Joshi GD; Chakravarty A; Raman GV; Krishnadas SR; Sivaswamy J
    J Glaucoma; 2016 Jul; 25(7):590-7. PubMed ID: 26580479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning in glaucoma genetic risk assessment.
    Zhang Z; Liu J; Kwoh CK; Sim X; Tay WT; Tan Y; Yin F; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6182-5. PubMed ID: 21097154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic cup segmentation from fundus images for glaucoma diagnosis.
    Hu M; Zhu C; Li X; Xu Y
    Bioengineered; 2017 Jan; 8(1):21-28. PubMed ID: 27764542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic glaucoma diagnosis through medical imaging informatics.
    Liu J; Zhang Z; Wong DW; Xu Y; Yin F; Cheng J; Tan NM; Kwoh CK; Xu D; Tham YC; Aung T; Wong TY
    J Am Med Inform Assoc; 2013; 20(6):1021-7. PubMed ID: 23538725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient optic cup detection from intra-image learning with retinal structure priors.
    Xu Y; Liu J; Lin S; Xu D; Cheung CY; Aung T; Wong TY
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):58-65. PubMed ID: 23285535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive threshold based image processing technique for improved glaucoma detection and classification.
    Issac A; Partha Sarathi M; Dutta MK
    Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated diagnosis of glaucoma using texture and higher order spectra features.
    Acharya UR; Dua S; Du X; Sree S V; Chua CK
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):449-55. PubMed ID: 21349793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence in glaucoma.
    Zheng C; Johnson TV; Garg A; Boland MV
    Curr Opin Ophthalmol; 2019 Mar; 30(2):97-103. PubMed ID: 30562242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying genetic associations with MRI-derived measures via tree-guided sparse learning.
    Hao X; Yu J; Zhang D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):757-64. PubMed ID: 25485448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Identification of Glaucoma Using Deep Learning Methods.
    Cerentini A; Welfer D; Cordeiro d'Ornellas M; Pereira Haygert CJ; Dotto GN
    Stud Health Technol Inform; 2017; 245():318-321. PubMed ID: 29295107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided diagnosis based on enhancement of degraded fundus photographs.
    Jin K; Zhou M; Wang S; Lou L; Xu Y; Ye J; Qian D
    Acta Ophthalmol; 2018 May; 96(3):e320-e326. PubMed ID: 29090844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.