BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25485393)

  • 1. Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features.
    Guo Y; Wu G; Commander LA; Szary S; Jewells V; Lin W; Shent D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):308-15. PubMed ID: 25485393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
    Wu G; Kim M; Sanroma G; Wang Q; Munsell BC; Shen D;
    Neuroimage; 2015 Feb; 106():34-46. PubMed ID: 25463474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
    Guo Y; Gao Y; Shen D
    IEEE Trans Med Imaging; 2016 Apr; 35(4):1077-89. PubMed ID: 26685226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised deep feature learning for deformable registration of MR brain images.
    Wu G; Kim M; Wang Q; Gao Y; Liao S; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):649-56. PubMed ID: 24579196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based segmentation of hippocampal subfields in ultra-high resolution in vivo MRI.
    Van Leemput K; Bakkour A; Benner T; Wiggins G; Wald LL; Augustinack J; Dickerson BC; Golland P; Fischl B
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):235-43. PubMed ID: 18979753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general framework for image segmentation using ordered spatial dependency.
    Rousson M; Xu C
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):848-55. PubMed ID: 17354852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation.
    Platero C; Carmen Tobar M
    Artif Intell Med; 2015 Jun; 64(2):117-29. PubMed ID: 25982908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of sparse multi-modality representation and geometrical constraint for isointense infant brain segmentation.
    Wang L; Shi F; Li G; Lin W; Gilmore JH; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):703-10. PubMed ID: 24505729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.
    Park SH; Zong X; Gao Y; Lin W; Shen D
    Neuroimage; 2016 Jul; 134():223-235. PubMed ID: 27046107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian mixture model-based segmentation of MR images taken from premature infant brains.
    Merisaari H; Parkkola R; Alhoniemi E; Teräs M; Lehtonen L; Haataja L; Lapinleimu H; Nevalainen OS
    J Neurosci Methods; 2009 Aug; 182(1):110-22. PubMed ID: 19523488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of high-dimensional feature map for segmentation of MR images.
    He R; Sajja BR; Narayana PA
    Ann Biomed Eng; 2005 Oct; 33(10):1439-48. PubMed ID: 16240091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal patch-based label fusion for hippocampus segmentation.
    Coupé P; Manjón JV; Fonov V; Pruessner J; Robles M; Collins DL
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):129-36. PubMed ID: 20879392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning best features for deformable registration of MR brains.
    Wu G; Qi F; Shen D
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):179-87. PubMed ID: 16685958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.
    Guo T; Winterburn JL; Pipitone J; Duerden EG; Park MT; Chau V; Poskitt KJ; Grunau RE; Synnes A; Miller SP; Mallar Chakravarty M
    Neuroimage Clin; 2015; 9():176-93. PubMed ID: 26740912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation.
    Khalilzadeh MM; Fatemizadeh E; Behnam H
    Magn Reson Imaging; 2013 Jun; 31(5):733-41. PubMed ID: 23260393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.
    Chen Y; Zhao B; Zhang J; Zheng Y
    Magn Reson Imaging; 2014 Sep; 32(7):941-55. PubMed ID: 24832358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markov dependence tree-based segmentation of deep brain structures.
    Wu J; Chung AC
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):1092-100. PubMed ID: 18982713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
    Liao S; Gao Y; Oto A; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):254-61. PubMed ID: 24579148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of Infant Hippocampus Using Common Feature Representations Learned for Multimodal Longitudinal Data.
    Guo Y; Wu G; Yap PT; Jewells V; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2015 Oct; 9351():63-71. PubMed ID: 27019875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis.
    Wang L; Shi F; Gao Y; Li G; Lin W; Shen D
    Patch Based Tech Med Imaging (2015); 2015 Oct; 9467():28-36. PubMed ID: 28393146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.