These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25485399)

  • 1. Augmented reality assisted laparoscopic partial nephrectomy.
    Schneider A; Pezold S; Saner A; Ebbing J; Wyler S; Rosenthal R; Cattin PC
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):357-64. PubMed ID: 25485399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder.
    Zhao Z
    Biomed Mater Eng; 2014; 24(6):2665-72. PubMed ID: 25226970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pico Lantern: Surface reconstruction and augmented reality in laparoscopic surgery using a pick-up laser projector.
    Edgcumbe P; Pratt P; Yang GZ; Nguan C; Rohling R
    Med Image Anal; 2015 Oct; 25(1):95-102. PubMed ID: 26024818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid attitude estimation for laparoscopic surgical tools: a preliminary study.
    Ren H; Kazanzides P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5583-6. PubMed ID: 19964132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robotics-based flat-panel ultrasound device for continuous intraoperative transcutaneous imaging.
    Gumprecht JD; Bauer T; Stolzenburg JU; Lueth TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2152-5. PubMed ID: 22254764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pico Lantern: a pick-up projector for augmented reality in laparoscopic surgery.
    Edgcumbe P; Pratt P; Yang GZ; Nguan C; Rohling R
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):432-9. PubMed ID: 25333147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a novel calibration technique for optically tracked oblique laparoscopes.
    De Buck S; Maes F; D'Hoore A; Suetens P
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):467-74. PubMed ID: 18051092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a vision integration framework for laparoscopic surgical robot.
    Shin JW; Park JW; Lee CH; Hong S; Jo Y; Choi J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():347-9. PubMed ID: 17946817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-optic tracking of a flexible laparoscopic ultrasound transducer for laparoscope augmentation.
    Feuerstein M; Reichl T; Vogel J; Schneider A; Feussner H; Navabi N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):458-66. PubMed ID: 18051091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landmark-based augmented reality system for paranasal and transnasal endoscopic surgeries.
    Thoranaghatte R; Garcia J; Caversaccio M; Widmer D; Gonzalez Ballester MA; Nolte LP; Zheng G
    Int J Med Robot; 2009 Dec; 5(4):415-22. PubMed ID: 19623600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and application of the coherent point drift algorithm to augmented reality surgical navigation for laparoscopic partial nephrectomy.
    Zhang X; Wang T; Zhang X; Zhang Y; Wang J
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):989-999. PubMed ID: 32361857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.
    Nakamoto M; Nakada K; Sato Y; Konishi K; Hashizume M; Tamura S
    IEEE Trans Med Imaging; 2008 Feb; 27(2):255-70. PubMed ID: 18334447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results.
    Teber D; Guven S; Simpfendörfer T; Baumhauer M; Güven EO; Yencilek F; Gözen AS; Rassweiler J
    Eur Urol; 2009 Aug; 56(2):332-8. PubMed ID: 19477580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of a DC pulsed magnetic tracking system in neurosurgical navigation: technique, accuracies, and influencing factors].
    Suess O; Suess S; Mularski S; Kühn B; Picht T; Schönherr S; Kombos T
    Biomed Tech (Berl); 2007 Jun; 52(3):223-33. PubMed ID: 17561783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based augmented reality for improved surgical scene understanding.
    Pauly O; Diotte B; Fallavollita P; Weidert S; Euler E; Navab N
    Comput Med Imaging Graph; 2015 Apr; 41():55-60. PubMed ID: 24998759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid navigation interface for orthopedic and trauma surgery.
    Traub J; Stefan P; Heining SM; Sielhorst T; Riquarts C; Euler E; Navab N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):373-80. PubMed ID: 17354912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery.
    Altamar HO; Ong RE; Glisson CL; Viprakasit DP; Miga MI; Herrell SD; Galloway RL
    J Endourol; 2011 Mar; 25(3):511-7. PubMed ID: 21142942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive markers for ultrasound tracking of surgical instruments.
    Stoll J; Dupont P
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):41-8. PubMed ID: 16685941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTI-based virtual reality system for neurosurgery.
    Lo CY; Chao YP; Chou KH; Guo WY; Su JL; Lin CP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1326-9. PubMed ID: 18002208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.