BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25485417)

  • 1. Extracting vascular networks under physiological constraints via integer programming.
    Rempfler M; Schneider M; Ielacqua GD; Xiao X; Stock SR; Klohs J; Székely G; Andres B; Menze BH
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):505-12. PubMed ID: 25485417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing cerebrovascular networks under local physiological constraints by integer programming.
    Rempfler M; Schneider M; Ielacqua GD; Xiao X; Stock SR; Klohs J; Székely G; Andres B; Menze BH
    Med Image Anal; 2015 Oct; 25(1):86-94. PubMed ID: 25977158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative magnetic resonance angiography.
    Kellner-Weldon F
    Clin Neuroradiol; 2012 Mar; 22(1):115-8. PubMed ID: 22311115
    [No Abstract]   [Full Text] [Related]  

  • 4. Segmentation of perivascular spaces in 7T MR image using auto-context model with orientation-normalized features.
    Park SH; Zong X; Gao Y; Lin W; Shen D
    Neuroimage; 2016 Jul; 134():223-235. PubMed ID: 27046107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous segmentation and anatomical labeling of the cerebral vasculature.
    Robben D; Türetken E; Sunaert S; Thijs V; Wilms G; Fua P; Maes F; Suetens P
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):307-14. PubMed ID: 25333132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topo-geometric filtration scheme for geometric active contours and level sets: application to cerebrovascular segmentation.
    Molina-Abril H; Frangi AF
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):755-62. PubMed ID: 25333187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap-free segmentation of vascular networks with automatic image processing pipeline.
    Hsu CY; Ghaffari M; Alaraj A; Flannery M; Zhou XJ; Linninger A
    Comput Biol Med; 2017 Mar; 82():29-39. PubMed ID: 28135646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance angiography: from anatomical knowledge modeling to vessel segmentation.
    Passat N; Ronse C; Baruthio J; Armspach JP; Maillot C
    Med Image Anal; 2006 Apr; 10(2):259-74. PubMed ID: 16386938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical cerebroarterial atlas derived from 700 MRA datasets.
    Forkert ND; Fiehler J; Suniaga S; Wersching H; Knecht S; Kemmling A
    Methods Inf Med; 2013; 52(6):467-74. PubMed ID: 24190179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncluttered Single-Image Visualization of Vascular Structures Using GPU and Integer Programming.
    Won JH; Jeon Y; Rosenberg JK; Yoon S; Rubin GD; Napel S
    IEEE Trans Vis Comput Graph; 2013 Jan; 19(1):81-93. PubMed ID: 22291148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random walks with adaptive cylinder flux based connectivity for vessel segmentation.
    Zhu N; Chung AC
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):550-8. PubMed ID: 24579184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On geometric modeling of the human intracranial venous system.
    Volkau I; Ng TT; Marchenko Y; Nowinski WL
    IEEE Trans Med Imaging; 2008 Jun; 27(6):745-51. PubMed ID: 18541482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial graphs for intra-cranial vascular network characterization, generation, and discrimination.
    Aylward SR; Jomier J; Vivert C; LeDigarcher V; Bullitt E
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):59-66. PubMed ID: 16685829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partition-based extraction of cerebral arteries from CT angiography with emphasis on adaptive tracking.
    Shim H; Yun ID; Lee KM; Lee SU
    Inf Process Med Imaging; 2005; 19():357-68. PubMed ID: 17354709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGIF: topological gap in-fill for vascular networks--a generative physiological modeling approach.
    Schneider M; Hirsch S; Weber B; Székely G; Menze BH
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):89-96. PubMed ID: 25485366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated extraction of the cortical sulci based on a supervised learning approach.
    Tu Z; Zheng S; Yuille AL; Reiss AL; Dutton RA; Lee AD; Galaburda AM; Dinov I; Thompson PM; Toga AW
    IEEE Trans Med Imaging; 2007 Apr; 26(4):541-52. PubMed ID: 17427741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectorization of optically sectioned brain microvasculature: learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments.
    Kaufhold JP; Tsai PS; Blinder P; Kleinfeld D
    Med Image Anal; 2012 Aug; 16(6):1241-58. PubMed ID: 22854035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of intracranial arteries and veins in four-dimensional cerebral CT perfusion scans.
    Mendrik A; Vonken EJ; van Ginneken B; Smit E; Waaije A; Bertolini G; Viergever MA; Prokop M
    Med Phys; 2010 Jun; 37(6):2956-66. PubMed ID: 20632608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiography using multirange filters and local variances.
    Law MW; Chung AC
    IEEE Trans Image Process; 2013 Mar; 22(3):845-59. PubMed ID: 22955902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular territory image analysis using vessel encoded arterial spin labeling.
    Chappell MA; Okell TW; Jezzard P; Woolrich MW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):514-21. PubMed ID: 20426151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.