These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 25485579)

  • 1. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.
    Arlia-Ciommo A; Piano A; Leonov A; Svistkova V; Titorenko VI
    Cell Cycle; 2014; 13(21):3336-49. PubMed ID: 25485579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan.
    Burstein MT; Kyryakov P; Beach A; Richard VR; Koupaki O; Gomez-Perez A; Leonov A; Levy S; Noohi F; Titorenko VI
    Cell Cycle; 2012 Sep; 11(18):3443-62. PubMed ID: 22894934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging.
    Jazwinski SM
    Ageing Res Rev; 2015 Sep; 23(Pt A):67-74. PubMed ID: 25555678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.
    Beach A; Richard VR; Bourque S; Boukh-Viner T; Kyryakov P; Gomez-Perez A; Arlia-Ciommo A; Feldman R; Leonov A; Piano A; Svistkova V; Titorenko VI
    Cell Cycle; 2015; 14(11):1643-56. PubMed ID: 25839782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
    Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast.
    Pan Y
    Exp Gerontol; 2011 Nov; 46(11):847-52. PubMed ID: 21884780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging.
    Dakik P; Titorenko VI
    Front Genet; 2016; 7():177. PubMed ID: 27729926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction reduces yeast replicative lifespan by elevating RAS-dependent ROS production by the ER-localized NADPH oxidase Yno1.
    Yi DG; Hong S; Huh WK
    PLoS One; 2018; 13(6):e0198619. PubMed ID: 29912878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The retrograde response retrograde response and other pathways of interorganelle communication interorganelle communication in yeast replicative aging.
    Jazwinski SM
    Subcell Biochem; 2012; 57():79-100. PubMed ID: 22094418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast replicative aging model.
    He C; Zhou C; Kennedy BK
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt A):2690-2696. PubMed ID: 29524633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA damage and DNA replication stress in yeast models of aging.
    Burhans WC; Weinberger M
    Subcell Biochem; 2012; 57():187-206. PubMed ID: 22094423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2.
    Roux AE; Quissac A; Chartrand P; Ferbeyre G; Rokeach LA
    Aging Cell; 2006 Aug; 5(4):345-57. PubMed ID: 16822282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals.
    Patil C; Walter P
    Curr Opin Cell Biol; 2001 Jun; 13(3):349-55. PubMed ID: 11343907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-autonomous mechanisms of chronological aging in the yeast
    Arlia-Ciommo A; Leonov A; Piano A; Svistkova V; Titorenko VI
    Microb Cell; 2014 May; 1(6):163-178. PubMed ID: 28357241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures.
    Werner-Washburne M; Roy S; Davidson GS
    Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slm35 links mitochondrial stress response and longevity through TOR signaling pathway.
    Aguilar-Lopez JL; Laboy R; Jaimes-Miranda F; Garay E; DeLuna A; Funes S
    Aging (Albany NY); 2016 Dec; 8(12):3255-3271. PubMed ID: 27922823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproductive potential and instability of the rDNA region of the Saccharomyces cerevisiae yeast: Common or separate mechanisms of regulation?
    Zadrag-Tecza R; Skoneczna A
    Exp Gerontol; 2016 Nov; 84():29-39. PubMed ID: 27546186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in Saccharomyces cerevisiae.
    Swinnen E; Ghillebert R; Wilms T; Winderickx J
    FEMS Yeast Res; 2014 Feb; 14(1):17-32. PubMed ID: 24102693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging.
    Kapahi P; Chen D; Rogers AN; Katewa SD; Li PW; Thomas EL; Kockel L
    Cell Metab; 2010 Jun; 11(6):453-65. PubMed ID: 20519118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.