These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 25485586)
21. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. Sviderskaya EV; Gray-Schopfer VC; Hill SP; Smit NP; Evans-Whipp TJ; Bond J; Hill L; Bataille V; Peters G; Kipling D; Wynford-Thomas D; Bennett DC J Natl Cancer Inst; 2003 May; 95(10):723-32. PubMed ID: 12759390 [TBL] [Abstract][Full Text] [Related]
22. A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers. Vrba L; Garbe JC; Stampfer MR; Futscher BW Epigenetics; 2015; 10(11):1074-83. PubMed ID: 26646903 [TBL] [Abstract][Full Text] [Related]
23. Breast primary epithelial cells that escape p16-dependent stasis enter a telomere-driven crisis state. Feijoo P; Terradas M; Soler D; Domínguez D; Tusell L; Genescà A Breast Cancer Res; 2016 Jan; 18(1):7. PubMed ID: 26758019 [TBL] [Abstract][Full Text] [Related]
24. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Patel PL; Suram A; Mirani N; Bischof O; Herbig U Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E5024-33. PubMed ID: 27503890 [TBL] [Abstract][Full Text] [Related]
25. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Brenner AJ; Stampfer MR; Aldaz CM Oncogene; 1998 Jul; 17(2):199-205. PubMed ID: 9674704 [TBL] [Abstract][Full Text] [Related]
26. TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Cipriano R; Kan CE; Graham J; Danielpour D; Stampfer M; Jackson MW Proc Natl Acad Sci U S A; 2011 May; 108(21):8668-73. PubMed ID: 21555587 [TBL] [Abstract][Full Text] [Related]
27. MYC and RAS are unable to cooperate in overcoming cellular senescence and apoptosis in normal human fibroblasts. Zhang F; Zakaria SM; Högqvist Tabor V; Singh M; Tronnersjö S; Goodwin J; Selivanova G; Bartek J; Castell A; Larsson LG Cell Cycle; 2018; 17(24):2697-2715. PubMed ID: 30526305 [TBL] [Abstract][Full Text] [Related]
28. Overcoming cellular senescence in human cancer pathogenesis. Yeager TR; DeVries S; Jarrard DF; Kao C; Nakada SY; Moon TD; Bruskewitz R; Stadler WM; Meisner LF; Gilchrist KW; Newton MA; Waldman FM; Reznikoff CA Genes Dev; 1998 Jan; 12(2):163-74. PubMed ID: 9436977 [TBL] [Abstract][Full Text] [Related]
29. Mammary epithelial cell transformation: insights from cell culture and mouse models. Dimri G; Band H; Band V Breast Cancer Res; 2005; 7(4):171-9. PubMed ID: 15987472 [TBL] [Abstract][Full Text] [Related]
30. p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Jarrard DF; Sarkar S; Shi Y; Yeager TR; Magrane G; Kinoshita H; Nassif N; Meisner L; Newton MA; Waldman FM; Reznikoff CA Cancer Res; 1999 Jun; 59(12):2957-64. PubMed ID: 10383161 [TBL] [Abstract][Full Text] [Related]
31. Immortalization of bovine capillary endothelial cells by hTERT alone involves inactivation of endogenous p16INK4A/pRb. Veitonmäki N; Fuxe J; Hultdin M; Roos G; Pettersson RF; Cao Y FASEB J; 2003 Apr; 17(6):764-6. PubMed ID: 12586745 [TBL] [Abstract][Full Text] [Related]
32. Centrosome aberrations in human mammary epithelial cells driven by cooperative interactions between p16INK4a deficiency and telomere-dependent genotoxic stress. Domínguez D; Feijoo P; Bernal A; Ercilla A; Agell N; Genescà A; Tusell L Oncotarget; 2015 Sep; 6(29):28238-56. PubMed ID: 26318587 [TBL] [Abstract][Full Text] [Related]
33. Myc, Cdk2 and cellular senescence: Old players, new game. Campaner S; Doni M; Verrecchia A; Fagà G; Bianchi L; Amati B Cell Cycle; 2010 Sep; 9(18):3655-61. PubMed ID: 20818171 [TBL] [Abstract][Full Text] [Related]
34. Events in the immortalizing process of primary human mammary epithelial cells by the catalytic subunit of human telomerase. Kim H; Farris J; Christman SA; Kong BW; Foster LK; O'Grady SM; Foster DN Biochem J; 2002 Aug; 365(Pt 3):765-72. PubMed ID: 11978176 [TBL] [Abstract][Full Text] [Related]
35. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Kiyono T; Foster SA; Koop JI; McDougall JK; Galloway DA; Klingelhutz AJ Nature; 1998 Nov; 396(6706):84-8. PubMed ID: 9817205 [TBL] [Abstract][Full Text] [Related]
36. Culture models of human mammary epithelial cell transformation. Stampfer MR; Yaswen P J Mammary Gland Biol Neoplasia; 2000 Oct; 5(4):365-78. PubMed ID: 14973382 [TBL] [Abstract][Full Text] [Related]
37. Generation of Immortalised But Unstable Cells after hTERT Introduction in Telomere-Compromised and p53-Deficient vHMECs. Bernal A; Zafon E; Domínguez D; Bertran E; Tusell L Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30018248 [TBL] [Abstract][Full Text] [Related]
39. Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase. Li HM; Man C; Jin Y; Deng W; Yip YL; Feng HC; Cheung YC; Lo KW; Meltzer PS; Wu ZG; Kwong YL; Yuen AP; Tsao SW Int J Cancer; 2006 Oct; 119(7):1567-76. PubMed ID: 16688717 [TBL] [Abstract][Full Text] [Related]
40. Conversion of normal to malignant phenotype: telomere shortening, telomerase activation, and genomic instability during immortalization of human oral keratinocytes. Kang MK; Park NH Crit Rev Oral Biol Med; 2001; 12(1):38-54. PubMed ID: 11349961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]