BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25485680)

  • 1. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model.
    Maltecca F; Baseggio E; Consolato F; Mazza D; Podini P; Young SM; Drago I; Bahr BA; Puliti A; Codazzi F; Quattrini A; Casari G
    J Clin Invest; 2015 Jan; 125(1):263-74. PubMed ID: 25485680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity.
    Mancini C; Hoxha E; Iommarini L; Brussino A; Richter U; Montarolo F; Cagnoli C; Parolisi R; Gondor Morosini DI; Nicolò V; Maltecca F; Muratori L; Ronchi G; Geuna S; Arnaboldi F; Donetti E; Giorgio E; Cavalieri S; Di Gregorio E; Pozzi E; Ferrero M; Riberi E; Casari G; Altruda F; Turco E; Gasparre G; Battersby BJ; Porcelli AM; Ferrero E; Brusco A; Tempia F
    Neurobiol Dis; 2019 Apr; 124():14-28. PubMed ID: 30389403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration.
    Maltecca F; Magnoni R; Cerri F; Cox GA; Quattrini A; Casari G
    J Neurosci; 2009 Jul; 29(29):9244-54. PubMed ID: 19625515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astrocyte-specific deletion of the mitochondrial m-AAA protease reveals glial contribution to neurodegeneration.
    Murru S; Hess S; Barth E; Almajan ER; Schatton D; Hermans S; Brodesser S; Langer T; Kloppenburg P; Rugarli EI
    Glia; 2019 Aug; 67(8):1526-1541. PubMed ID: 30989755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival.
    Almajan ER; Richter R; Paeger L; Martinelli P; Barth E; Decker T; Larsson NG; Kloppenburg P; Langer T; Rugarli EI
    J Clin Invest; 2012 Nov; 122(11):4048-58. PubMed ID: 23041622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation.
    Tulli S; Del Bondio A; Baderna V; Mazza D; Codazzi F; Pierson TM; Ambrosi A; Nolte D; Goizet C; Toro C; Baets J; Deconinck T; DeJonghe P; Mandich P; Casari G; Maltecca F
    J Med Genet; 2019 Aug; 56(8):499-511. PubMed ID: 30910913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.
    Patron M; Sprenger HG; Langer T
    Cell Res; 2018 Mar; 28(3):296-306. PubMed ID: 29451229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinocerebellar Ataxia Type 28-Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2.
    Tunc S; Dulovic-Mahlow M; Baumann H; Baaske MK; Jahn M; Junker J; Münchau A; Brüggemann N; Lohmann K
    Cerebellum; 2019 Aug; 18(4):817-822. PubMed ID: 31111429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.
    Pierson TM; Adams D; Bonn F; Martinelli P; Cherukuri PF; Teer JK; Hansen NF; Cruz P; Mullikin For The Nisc Comparative Sequencing Program JC; Blakesley RW; Golas G; Kwan J; Sandler A; Fuentes Fajardo K; Markello T; Tifft C; Blackstone C; Rugarli EI; Langer T; Gahl WA; Toro C
    PLoS Genet; 2011 Oct; 7(10):e1002325. PubMed ID: 22022284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia.
    Musova Z; Kaiserova M; Kriegova E; Fillerova R; Vasovcak P; Santava A; Mensikova K; Zumrova A; Krepelova A; Sedlacek Z; Kanovsky P
    Cerebellum; 2014 Jun; 13(3):331-7. PubMed ID: 24272953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways.
    Mancini C; Roncaglia P; Brussino A; Stevanin G; Lo Buono N; Krmac H; Maltecca F; Gazzano E; Bartoletti Stella A; Calvaruso MA; Iommarini L; Cagnoli C; Forlani S; Le Ber I; Durr A; Brice A; Ghigo D; Casari G; Porcelli AM; Funaro A; Gasparre G; Gustincich S; Brusco A
    BMC Med Genomics; 2013 Jun; 6():22. PubMed ID: 23777634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinocerebellar ataxia type 28 (SCA28) is an uncommon cause of dominant ataxia among Chinese kindreds.
    Jia D; Tang B; Chen Z; Shi Y; Sun Z; Zhang L; Wang J; Xia K; Jiang H
    Int J Neurosci; 2012 Oct; 122(10):560-2. PubMed ID: 22563911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
    Franchino CA; Brughera M; Baderna V; De Ritis D; Rocco A; Seneca S; Regal L; Podini P; D'Antonio M; Toro C; Quattrini A; Scalais E; Maltecca F
    Brain; 2024 Mar; 147(3):1043-1056. PubMed ID: 37804316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia.
    Chiang HL; Fuh JL; Tsai YS; Soong BW; Liao YC; Lee YC
    J Neurol Sci; 2021 Sep; 428():117600. PubMed ID: 34333379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28.
    Di Bella D; Lazzaro F; Brusco A; Plumari M; Battaglia G; Pastore A; Finardi A; Cagnoli C; Tempia F; Frontali M; Veneziano L; Sacco T; Boda E; Brussino A; Bonn F; Castellotti B; Baratta S; Mariotti C; Gellera C; Fracasso V; Magri S; Langer T; Plevani P; Di Donato S; Muzi-Falconi M; Taroni F
    Nat Genet; 2010 Apr; 42(4):313-21. PubMed ID: 20208537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28.
    Smets K; Deconinck T; Baets J; Sieben A; Martin JJ; Smouts I; Wang S; Taroni F; Di Bella D; Van Hecke W; Parizel PM; Jadoul C; De Potter R; Couvreur F; Rugarli E; De Jonghe P
    Neurology; 2014 Jun; 82(23):2092-100. PubMed ID: 24814845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missense mutations in the AFG3L2 proteolytic domain account for ∼1.5% of European autosomal dominant cerebellar ataxias.
    Cagnoli C; Stevanin G; Brussino A; Barberis M; Mancini C; Margolis RL; Holmes SE; Nobili M; Forlani S; Padovan S; Pappi P; Zaros C; Leber I; Ribai P; Pugliese L; Assalto C; Brice A; Migone N; Dürr A; Brusco A
    Hum Mutat; 2010 Oct; 31(10):1117-24. PubMed ID: 20725928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation.
    Maltecca F; De Stefani D; Cassina L; Consolato F; Wasilewski M; Scorrano L; Rizzuto R; Casari G
    Hum Mol Genet; 2012 Sep; 21(17):3858-70. PubMed ID: 22678058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28.
    Löbbe AM; Kang JS; Hilker R; Hackstein H; Müller U; Nolte D
    J Mol Neurosci; 2014 Apr; 52(4):493-6. PubMed ID: 24293060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCA28: Novel Mutation in the AFG3L2 Proteolytic Domain Causes a Mild Cerebellar Syndrome with Selective Type-1 Muscle Fiber Atrophy.
    Svenstrup K; Nielsen TT; Aidt F; Rostgaard N; Duno M; Wibrand F; Vinther-Jensen T; Law I; Vissing J; Roos P; Hjermind LE; Nielsen JE
    Cerebellum; 2017 Feb; 16(1):62-67. PubMed ID: 26868664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.