These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25485713)

  • 1. Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender.
    Yaesoubi M; Miller RL; Calhoun VD
    Neuroimage; 2015 Feb; 107():85-94. PubMed ID: 25485713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
    Leonardi N; Richiardi J; Gschwind M; Simioni S; Annoni JM; Schluep M; Vuilleumier P; Van De Ville D
    Neuroimage; 2013 Dec; 83():937-50. PubMed ID: 23872496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for functional network connectivity among spatially independent resting-state components in schizophrenia.
    Jafri MJ; Pearlson GD; Stevens M; Calhoun VD
    Neuroimage; 2008 Feb; 39(4):1666-81. PubMed ID: 18082428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional network connectivity during rest and task conditions: a comparative study.
    Arbabshirani MR; Havlicek M; Kiehl KA; Pearlson GD; Calhoun VD
    Hum Brain Mapp; 2013 Nov; 34(11):2959-71. PubMed ID: 22736522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks.
    Wee CY; Yap PT; Shen D
    CNS Neurosci Ther; 2016 Mar; 22(3):212-9. PubMed ID: 26821773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches.
    Kang J; Wang L; Yan C; Wang J; Liang X; He Y
    Neuroimage; 2011 Jun; 56(3):1222-34. PubMed ID: 21420500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for estimating dynamic functional network connectivity gradients (dFNG) from ICA captures smooth inter-network modulation.
    Soleimani N; Iraji A; van Erp TGM; Belger A; Calhoun VD
    bioRxiv; 2024 Jun; ():. PubMed ID: 38559041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 10. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information.
    Yaesoubi M; Allen EA; Miller RL; Calhoun VD
    Neuroimage; 2015 Oct; 120():133-42. PubMed ID: 26162552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
    Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM
    Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodel Order Independent Component Analysis: A Data-Driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales.
    Meng X; Iraji A; Fu Z; Kochunov P; Belger A; Ford J; McEwen S; Mathalon DH; Mueller BA; Pearlson G; Potkin SG; Preda A; Turner J; Erp TV; Sui J; Calhoun VD
    Brain Connect; 2022 Sep; 12(7):617-628. PubMed ID: 34541879
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
    Zhang S; Li CR
    Brain Connect; 2017 Nov; 7(9):602-616. PubMed ID: 28954523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking whole-brain connectivity dynamics in the resting state.
    Allen EA; Damaraju E; Plis SM; Erhardt EB; Eichele T; Calhoun VD
    Cereb Cortex; 2014 Mar; 24(3):663-76. PubMed ID: 23146964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Resting-State Connectivity Differences in Eyes Open Versus Eyes Closed Conditions.
    Agcaoglu O; Wilson TW; Wang YP; Stephen JM; Calhoun VD
    Brain Connect; 2020 Nov; 10(9):504-519. PubMed ID: 32892633
    [No Abstract]   [Full Text] [Related]  

  • 17. Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.
    Zhang G; Cai B; Zhang A; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2020 Feb; 39(2):488-498. PubMed ID: 31329112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects.
    Filippi M; Valsasina P; Misci P; Falini A; Comi G; Rocca MA
    Hum Brain Mapp; 2013 Jun; 34(6):1330-43. PubMed ID: 22359372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study.
    Yu Q; Sui J; Rachakonda S; He H; Gruner W; Pearlson G; Kiehl KA; Calhoun VD
    PLoS One; 2011; 6(9):e25423. PubMed ID: 21980454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.