BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 25485807)

  • 21. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size.
    Briñas RP; Hu M; Qian L; Lymar ES; Hainfeld JF
    J Am Chem Soc; 2008 Jan; 130(3):975-82. PubMed ID: 18154334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode.
    Zhang L; Yuan R; Chai Y; Li X
    Anal Chim Acta; 2007 Jul; 596(1):99-105. PubMed ID: 17616246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa.
    Husseiny MI; El-Aziz MA; Badr Y; Mahmoud MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1003-6. PubMed ID: 17084659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system.
    Cui R; Zhang MX; Tian ZQ; Zhang ZL; Pang DW
    Nanoscale; 2010 Oct; 2(10):2120-5. PubMed ID: 20820640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine.
    Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z
    Analyst; 2011 Sep; 136(18):3725-30. PubMed ID: 21804959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size.
    Sardar R; Shumaker-Parry JS
    J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption.
    Gadogbe M; Ansar SM; He G; Collier WE; Rodriguez J; Liu D; Chu IW; Zhang D
    Anal Bioanal Chem; 2013 Jan; 405(1):413-22. PubMed ID: 23092965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics.
    Rastogi L; Kora AJ; J A
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1571-7. PubMed ID: 24364962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of size and shape of Au nanoparticles using amino-X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers.
    Goy-López S; Taboada P; Cambón A; Juárez J; Alvarez-Lorenzo C; Concheiro A; Mosquera V
    J Phys Chem B; 2010 Jan; 114(1):66-76. PubMed ID: 19968275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.
    Iglesias E; Prado-Gotor R
    Phys Chem Chem Phys; 2015 Jan; 17(1):644-54. PubMed ID: 25407561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.
    Oh E; Susumu K; Goswami R; Mattoussi H
    Langmuir; 2010 May; 26(10):7604-13. PubMed ID: 20121172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal-induced growth of gold nanoparticles conjugated with thermoresponsive polymer without chemical reduction.
    Uehara N; Fujita M; Shimizu T
    J Colloid Interface Sci; 2011 Jul; 359(1):142-7. PubMed ID: 21507420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing cysteine self-assembled monolayers over gold nanoparticles--towards selective electrochemical sensors.
    Galal A; Atta NF; El-Ads EH
    Talanta; 2012 May; 93():264-73. PubMed ID: 22483909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of a calix[4]arene amphiphilie bearing cysteine and uniform Au nanoparticle formation templated by its four cysteine moieties.
    Fujii S; Sakurai K; Okobira T; Ohta N; Takahara A
    Langmuir; 2013 Nov; 29(45):13666-75. PubMed ID: 24111537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability.
    Leonard K; Ahmmad B; Okamura H; Kurawaki J
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):391-6. PubMed ID: 20980131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications.
    Shan J; Tenhu H
    Chem Commun (Camb); 2007 Nov; (44):4580-98. PubMed ID: 17989803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of gold nanoparticles using various amino acids.
    Maruyama T; Fujimoto Y; Maekawa T
    J Colloid Interface Sci; 2015 Jun; 447():254-7. PubMed ID: 25591824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Covalent assembly of gold nanoparticles for nonvolatile memory applications.
    Gupta RK; Kusuma DY; Lee PS; Srinivasan MP
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4619-25. PubMed ID: 22023018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.