These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25485844)

  • 1. Breakdown of time-temperature superposition in a bead-spring polymer melt near the glass transition temperature.
    Yamazaki T
    J Phys Chem B; 2014 Dec; 118(50):14687-94. PubMed ID: 25485844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.
    Wang SQ; Cheng S; Lin P; Li X
    J Chem Phys; 2014 Sep; 141(9):094905. PubMed ID: 25194392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts.
    Pan D; Sun ZY
    J Chem Phys; 2018 Dec; 149(23):234904. PubMed ID: 30579312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probe molecules in polymer melts near the glass transition: A molecular dynamics study of chain length effects.
    Vallée RA; Paul W; Binder K
    J Chem Phys; 2010 Jan; 132(3):034901. PubMed ID: 20095750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of the chain dynamics in monodisperse oligomer melts and of the oligomer tracer diffusion in an entangled polymer matrix.
    Durand M; Meyer H; Benzerara O; Baschnagel J; Vitrac O
    J Chem Phys; 2010 May; 132(19):194902. PubMed ID: 20499987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigidity transition in polymer melts with van der Waals interaction.
    Wallace ML; Joós B; Plischke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041501. PubMed ID: 15600413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress relaxation in entangled polymer melts.
    Hou JX; Svaneborg C; Everaers R; Grest GS
    Phys Rev Lett; 2010 Aug; 105(6):068301. PubMed ID: 20868018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole range of chain dynamics in entangled polystyrene melts revealed from creep compliance: thermorheological complexity between glassy-relaxation region and rubber-to-fluid region. 1.
    Lin YH
    J Phys Chem B; 2005 Sep; 109(37):17654-69. PubMed ID: 16853260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.
    Frey S; Weysser F; Meyer H; Farago J; Fuchs M; Baschnagel J
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):97. PubMed ID: 25715952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature.
    Chremos A; Glynos E; Green PF
    J Chem Phys; 2015 Jan; 142(4):044901. PubMed ID: 25638003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glass transition temperature of polymer melts.
    Dudowicz J; Freed KF; Douglas JF
    J Phys Chem B; 2005 Nov; 109(45):21285-92. PubMed ID: 16853759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Dependence of Conformational Relaxation of Poly(ethylene oxide) Melts.
    Kim HS; Kwon T; Park CB; Sung BJ
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulated glass-forming polymer melts: glass transition temperature and elastic constants of the glassy state.
    Schnell B; Meyer H; Fond C; Wittmer JP; Baschnagel J
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):97. PubMed ID: 21947893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chain stiffness and temperature on the dynamics and microstructure of crystallizable bead-spring polymer melts.
    Nguyen HT; Hoy RS
    Phys Rev E; 2016 Nov; 94(5-1):052502. PubMed ID: 27967146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-dynamics simulation study of the glass transition in amorphous polymers with controlled chain stiffness.
    Bulacu M; van der Giessen E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011807. PubMed ID: 17677484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities.
    Helfferich J; Brisch J; Meyer H; Benzerara O; Ziebert F; Farago J; Baschnagel J
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):71. PubMed ID: 29876655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.