These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25485943)

  • 1. Determination of the glass-transition temperature of proteins from a viscometric approach.
    Monkos K
    Int J Biol Macromol; 2015 Mar; 74():1-4. PubMed ID: 25485943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of solution conformation and hydrodynamic properties of equine, porcine and rabbit serum albumin using viscometric measurements.
    Monkos K
    Biochim Biophys Acta; 2005 Apr; 1748(1):100-9. PubMed ID: 15752698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature behaviour of viscous flow with proteins.
    Monkos K
    Gen Physiol Biophys; 2011 Jun; 30(2):121-9. PubMed ID: 21613666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach.
    Monkos K
    Biochim Biophys Acta; 2004 Jul; 1700(1):27-34. PubMed ID: 15210122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of carbohydrate blends close to the glass transition: Temperature and water content dependence of the viscosity in relation to fragility and strength.
    Ubbink J; Dupas-Langlet M
    Food Res Int; 2020 Dec; 138(Pt B):109801. PubMed ID: 33288183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form.
    Monkos K
    Gen Physiol Biophys; 2013 Mar; 32(1):67-78. PubMed ID: 23531836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of caged dynamics at T(g) in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.
    Ngai KL; Capaccioli S; Paciaroni A
    J Chem Phys; 2013 Jun; 138(23):235102. PubMed ID: 23802985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The glass-transition behaviour of wheat gluten proteins.
    Noel TR; Parker R; Ring SG; Tatham AS
    Int J Biol Macromol; 1995 Apr; 17(2):81-5. PubMed ID: 7547719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amorphous state: first-principles derivation of the Gordon-Taylor equation for direct prediction of the glass transition temperature of mixtures; estimation of the crossover temperature of fragile glass formers; physical basis of the "Rule of 2/3".
    Skrdla PJ; Floyd PD; Dell'Orco PC
    Phys Chem Chem Phys; 2017 Aug; 19(31):20523-20532. PubMed ID: 28730199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the glass transition temperature of water solutions: comparison of different models.
    Katkov II; Levine F
    Cryobiology; 2004 Aug; 49(1):62-82. PubMed ID: 15265717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.
    Dereymaker A; Van Den Mooter G
    J Pharm Sci; 2015 May; 104(5):1759-66. PubMed ID: 25702912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
    Buehler MG; Kindle ML; Carter BP
    J Food Sci; 2015 Jun; 80(6):E1243-52. PubMed ID: 25944358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-bond network formation of water molecules and its effects on the glass transitions in the ethylene glycol aqueous solutions: failure of the Gordon-Taylor law in the water-rich range and absence of the T(g) = 115 K rearrangement process in bulk pure water.
    Nagoe A; Oguni M
    J Phys Condens Matter; 2010 Aug; 22(32):325103. PubMed ID: 21386485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Water on Amorphous Lidocaine.
    Xu X; Grohganz H; Rades T
    Mol Pharm; 2022 Sep; 19(9):3199-3205. PubMed ID: 35876141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glass transitions in aqueous solutions of protein (bovine serum albumin).
    Shinyashiki N; Yamamoto W; Yokoyama A; Yoshinari T; Yagihara S; Kita R; Ngai KL; Capaccioli S
    J Phys Chem B; 2009 Oct; 113(43):14448-56. PubMed ID: 19799444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glassy behavior of a percolative water-protein system.
    Pagnotta SE; Gargana R; Bruni F; Bocedi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031506. PubMed ID: 15903434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermorheological and mechanical properties of copolymers of lactide, isosorbide, and different phthalic acids.
    Zhang Z; Kricheldorf HR; Friedrich C
    Macromol Rapid Commun; 2015 Jan; 36(2):262-8. PubMed ID: 25429776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the pre-Tg DSC endotherm observed with solid state proteins associated with the protein internal dynamics? Investigation of bovine serum albumin by solid state hydrogen/deuterium exchange.
    Mizuno M; Pikal MJ
    Eur J Pharm Biopharm; 2013 Oct; 85(2):170-6. PubMed ID: 23669417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of some hydrodynamic parameters of ovine serum albumin solutions using viscometric measurements.
    Monkos K
    J Biol Phys; 2005 May; 31(2):219-32. PubMed ID: 23345893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.