These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 25485985)

  • 21. Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell.
    Bin AR; Yusoff M; Jang J
    Chem Commun (Camb); 2016 Apr; 52(34):5824-7. PubMed ID: 27035707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells.
    Shao Y; Xiao Z; Bi C; Yuan Y; Huang J
    Nat Commun; 2014 Dec; 5():5784. PubMed ID: 25503258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Small molecule-driven directional movement enabling pin-hole free perovskite film via fast solution engineering.
    Gao LL; Zhang KJ; Chen L; Chen N; Li CX; Li CJ; Yang GJ
    Nanoscale; 2017 Oct; 9(41):15778-15785. PubMed ID: 28858347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.
    Yuan Y; Li T; Wang Q; Xing J; Gruverman A; Huang J
    Sci Adv; 2017 Mar; 3(3):e1602164. PubMed ID: 28345043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.
    Pan DF; Bi GF; Chen GY; Zhang H; Liu JM; Wang GH; Wan JG
    Sci Rep; 2016 Mar; 6():22948. PubMed ID: 26954833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells.
    Li JJ; Ma JY; Ge QQ; Hu JS; Wang D; Wan LJ
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28518-23. PubMed ID: 26633192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells.
    Hao F; Stoumpos CC; Guo P; Zhou N; Marks TJ; Chang RP; Kanatzidis MG
    J Am Chem Soc; 2015 Sep; 137(35):11445-52. PubMed ID: 26313318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.
    Lee JW; Kim HS; Park NG
    Acc Chem Res; 2016 Feb; 49(2):311-9. PubMed ID: 26797391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber.
    Chen HW; Sakai N; Jena AK; Sanehira Y; Ikegami M; Ho KC; Miyasaka T
    J Phys Chem Lett; 2015 May; 6(9):1773-9. PubMed ID: 26263348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 4-fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells.
    Cai B; Peng Y; Cheng YB; Gu M
    Opt Express; 2015 Nov; 23(24):A1700-6. PubMed ID: 26698816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vapor and healing treatment for CH3NH3PbI(3-x)Cl(x) films toward large-area perovskite solar cells.
    Gouda L; Gottesman R; Tirosh S; Haltzi E; Hu J; Ginsburg A; Keller DA; Bouhadana Y; Zaban A
    Nanoscale; 2016 Mar; 8(12):6386-92. PubMed ID: 26754034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient molecular ferroelectric photovoltaic device with high photocurrent via lewis acid-base adduct approach.
    Gu J; Wang C; Xu X; Xiao L; Li J; Zhao J; Zou G
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35617939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large Switchable Photoconduction within 2D Potential Well of a Layered Ferroelectric Heterostructure.
    Yang Y; Mao H; Wang J; Zhang Q; Jin L; Wang C; Zhang Y; Su N; Meng F; Yang Y; Xia R; Chen R; Zhu H; Gu L; Yin Z; Nan CW; Zhang J
    Adv Mater; 2020 Sep; 32(37):e2003033. PubMed ID: 32729146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.
    Chen YS; Manser JS; Kamat PV
    J Am Chem Soc; 2015 Jan; 137(2):974-81. PubMed ID: 25543877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO
    Lu Z; Li P; Wan JG; Huang Z; Tian G; Pan D; Fan Z; Gao X; Liu JM
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27284-27289. PubMed ID: 28745480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced photovoltaic effect in BiVO4 semiconductor by incorporation with an ultrathin BiFeO3 ferroelectric layer.
    Dong W; Guo Y; Guo B; Li H; Liu H; Joel TW
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6925-9. PubMed ID: 23865621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells.
    Leijtens T; Lauber B; Eperon GE; Stranks SD; Snaith HJ
    J Phys Chem Lett; 2014 Apr; 5(7):1096-102. PubMed ID: 26274455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.
    Zhao X; Shen H; Zhang Y; Li X; Zhao X; Tai M; Li J; Li J; Li X; Lin H
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7826-33. PubMed ID: 26960451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photovoltaic properties of Bi2FeCrO6 films epitaxially grown on (100)-oriented silicon substrates.
    Nechache R; Huang W; Li S; Rosei F
    Nanoscale; 2016 Feb; 8(6):3237-43. PubMed ID: 26797567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compositional engineering of perovskite materials for high-performance solar cells.
    Jeon NJ; Noh JH; Yang WS; Kim YC; Ryu S; Seo J; Seok SI
    Nature; 2015 Jan; 517(7535):476-80. PubMed ID: 25561177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.