BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25486197)

  • 21. Nicotinamide adenine dinucleotide (NAD+): essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target.
    Griffiths HBS; Williams C; King SJ; Allison SJ
    Biochem Soc Trans; 2020 Jun; 48(3):733-744. PubMed ID: 32573651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of nicotinamide phosphoribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin.
    Bolandghamat Pour Z; Nourbakhsh M; Mousavizadeh K; Madjd Z; Ghorbanhosseini SS; Abdolvahabi Z; Hesari Z; Ezzati Mobasser S
    BMC Cancer; 2019 Nov; 19(1):1027. PubMed ID: 31675930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex.
    Morris-Blanco KC; Cohan CH; Neumann JT; Sick TJ; Perez-Pinzon MA
    J Cereb Blood Flow Metab; 2014 Jun; 34(6):1024-32. PubMed ID: 24667915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Over-expression of nicotinamide phosphoribosyltransferase in ovarian cancers.
    Shackelford RE; Bui MM; Coppola D; Hakam A
    Int J Clin Exp Pathol; 2010 Jun; 3(5):522-7. PubMed ID: 20606733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel carbon skeletons activate human NicotinAMide Phosphoribosyl Transferase (NAMPT) enzyme in biochemical assay.
    Almeida KH; Avalos-Irving L; Berardinelli S; Chauvin K; Yanez S
    PLoS One; 2023; 18(3):e0283428. PubMed ID: 36996070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic inactivation of BRCA1 through promoter hypermethylation in ovarian cancer progression.
    Wang YQ; Yan Q; Zhang JR; Li SD; Yang YX; Wan XP
    J Obstet Gynaecol Res; 2013 Feb; 39(2):549-54. PubMed ID: 23006047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair.
    Piacente F; Caffa I; Ravera S; Sociali G; Passalacqua M; Vellone VG; Becherini P; Reverberi D; Monacelli F; Ballestrero A; Odetti P; Cagnetta A; Cea M; Nahimana A; Duchosal M; Bruzzone S; Nencioni A
    Cancer Res; 2017 Jul; 77(14):3857-3869. PubMed ID: 28507103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAMPT overexpression alleviates alcohol-induced hepatic steatosis in mice.
    Xiong X; Yu J; Fan R; Zhang C; Xu L; Sun X; Huang Y; Wang Q; Ruan HB; Qian X
    PLoS One; 2019; 14(2):e0212523. PubMed ID: 30794635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-α-mediated Apoptosis in Human Lung Endothelial Cells.
    Oita RC; Camp SM; Ma W; Ceco E; Harbeck M; Singleton P; Messana J; Sun X; Wang T; Garcia JGN
    Am J Respir Cell Mol Biol; 2018 Jul; 59(1):36-44. PubMed ID: 29337590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nampt: linking NAD biology, metabolism and cancer.
    Garten A; Petzold S; Körner A; Imai S; Kiess W
    Trends Endocrinol Metab; 2009 Apr; 20(3):130-8. PubMed ID: 19109034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNA-26b Reduces Cell Viability by Inhibition of Nicotinamide Phosphoribosyltransferase in Breast Cancer Cells.
    Ameli Mojarad M; Ameli Mojarad M; Pourmahdian A
    DNA Cell Biol; 2022 Aug; 41(8):735-741. PubMed ID: 35792597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade.
    Zhao Y; Guan YF; Zhou XM; Li GQ; Li ZY; Zhou CC; Wang P; Miao CY
    Stroke; 2015 Jul; 46(7):1966-74. PubMed ID: 26060246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, Optimization, and Structure-Activity Relationships of Nicotinamide Phosphoribosyltransferase (NAMPT) Positive Allosteric Modulators (N-PAMs).
    Shen Z; Ratia K; Krider I; Ackerman-Berrier M; Penton C; Musku SR; Gordon-Blake JM; Laham MS; Christie N; Ma N; Fu J; Xiong R; Courey JM; Velma GR; Thatcher GRJ
    J Med Chem; 2023 Dec; 66(24):16704-16727. PubMed ID: 38096366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Phosphoribosyltransferase Down-regulation on Malignant Glioma Cell Characteristics.
    Kamada M; Ikeda K; Manome Y
    Anticancer Res; 2020 Sep; 40(9):4895-4905. PubMed ID: 32878777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NAMPT-Mediated NAD Biosynthesis as the Internal Timing Mechanism: In NAD+ World, Time Is Running in Its Own Way.
    Poljsak B
    Rejuvenation Res; 2018 Jun; 21(3):210-224. PubMed ID: 28756747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism.
    Frederick DW; Davis JG; Dávila A; Agarwal B; Michan S; Puchowicz MA; Nakamaru-Ogiso E; Baur JA
    J Biol Chem; 2015 Jan; 290(3):1546-58. PubMed ID: 25411251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNMT3A mutation promotes leukemia development through NAM-NAD metabolic reprogramming.
    Yang X; Wang X; Yang Y; Li Z; Chen Y; Shang S; Wang Y
    J Transl Med; 2023 Jul; 21(1):481. PubMed ID: 37464424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss of NAMPT in aging retinal pigment epithelium reduces NAD
    Jadeja RN; Powell FL; Jones MA; Fuller J; Joseph E; Thounaojam MC; Bartoli M; Martin PM
    Aging (Albany NY); 2018 Jun; 10(6):1306-1323. PubMed ID: 29905535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.
    Wang P; Yang X; Zhang Z; Song J; Guan YF; Zou DJ; Miao CY
    Metabolism; 2016 Jun; 65(6):852-62. PubMed ID: 27173464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of Allosteric Modulation of Nicotinamide Phosphoribosyltransferase to Elevate Cellular NAD
    Ratia KM; Shen Z; Gordon-Blake J; Lee H; Laham MS; Krider IS; Christie N; Ackerman-Berrier M; Penton C; Knowles NG; Musku SR; Fu J; Velma GR; Xiong R; Thatcher GRJ
    Biochemistry; 2023 Feb; 62(4):923-933. PubMed ID: 36746631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.