These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 25486326)
1. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities. Kim Y; Kim G Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326 [TBL] [Abstract][Full Text] [Related]
2. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
3. Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Araujo JV; Martins A; Leonor IB; Pinho ED; Reis RL; Neves NM J Biomater Sci Polym Ed; 2008; 19(10):1261-78. PubMed ID: 18854121 [TBL] [Abstract][Full Text] [Related]
4. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation. Choong C; Yuan S; Thian ES; Oyane A; Triffitt J J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559 [TBL] [Abstract][Full Text] [Related]
5. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950 [TBL] [Abstract][Full Text] [Related]
6. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403 [TBL] [Abstract][Full Text] [Related]
7. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid. Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244 [TBL] [Abstract][Full Text] [Related]
8. Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria. Kook MS; Roh HS; Kim BH Dent Mater J; 2018 Jul; 37(4):599-610. PubMed ID: 29731489 [TBL] [Abstract][Full Text] [Related]
9. A surface-modified poly(ɛ-caprolactone) scaffold comprising variable nanosized surface-roughness using a plasma treatment. Jeon H; Lee H; Kim G Tissue Eng Part C Methods; 2014 Dec; 20(12):951-63. PubMed ID: 24635019 [TBL] [Abstract][Full Text] [Related]
10. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
11. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Yildirim ED; Besunder R; Pappas D; Allen F; Güçeri S; Sun W Biofabrication; 2010 Mar; 2(1):014109. PubMed ID: 20811124 [TBL] [Abstract][Full Text] [Related]
12. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering. Ko YM; Choi DY; Jung SC; Kim BH J Nanosci Nanotechnol; 2015 Jan; 15(1):192-5. PubMed ID: 26328328 [TBL] [Abstract][Full Text] [Related]
14. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Chou YF; Huang W; Dunn JC; Miller TA; Wu BM Biomaterials; 2005 Jan; 26(3):285-95. PubMed ID: 15262470 [TBL] [Abstract][Full Text] [Related]
15. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related]
16. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
18. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486 [TBL] [Abstract][Full Text] [Related]
19. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]