These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25486337)

  • 41. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system.
    Van Eerten-Jansen MC; Veldhoen AB; Plugge CM; Stams AJ; Buisman CJ; Ter Heijne A
    Archaea; 2013; 2013():481784. PubMed ID: 24187516
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens.
    Neubeck A; Sjöberg S; Price A; Callac N; Schnürer A
    PLoS One; 2016; 11(12):e0168357. PubMed ID: 27992585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications.
    Palacios PA; Philips J; Bentien A; Kofoed MVW
    Biotechnol Adv; 2024; 73():108369. PubMed ID: 38685440
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture.
    Leitão P; Rossetti S; Nouws HP; Danko AS; Majone M; Aulenta F
    Bioresour Technol; 2015 Nov; 195():78-82. PubMed ID: 26099437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes.
    Gao Y; Lee J; Neufeld JD; Park J; Rittmann BE; Lee HS
    Sci Rep; 2017 Jul; 7(1):5099. PubMed ID: 28698657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electromethanogenesis: the direct bioconversion of current to methane.
    Booth B
    Environ Sci Technol; 2009 Jul; 43(13):4619. PubMed ID: 19673242
    [No Abstract]   [Full Text] [Related]  

  • 47. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.
    Molenaar SD; Saha P; Mol AR; Sleutels TH; Ter Heijne A; Buisman CJ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comprehensive comparison of five different carbon-based cathode materials in CO
    Zhen G; Zheng S; Lu X; Zhu X; Mei J; Kobayashi T; Xu K; Li YY; Zhao Y
    Bioresour Technol; 2018 Oct; 266():382-388. PubMed ID: 29982061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
    Tremblay PL; Angenent LT; Zhang T
    Trends Biotechnol; 2017 Apr; 35(4):360-371. PubMed ID: 27816255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing bioelectromethanosynthesis of CO
    Hu W; Zheng S; Wang J; Lu X; Han Y; Wang J; Zhen G
    Chemosphere; 2024 Jun; 358():142119. PubMed ID: 38697567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study of Electrochemical Reduction of CO
    Gimkiewicz C; Hegner R; Gutensohn MF; Koch C; Harnisch F
    ChemSusChem; 2017 Mar; 10(5):958-967. PubMed ID: 27935266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis.
    Mateos R; Sotres A; Alonso RM; Escapa A; Morán A
    Bioelectrochemistry; 2018 Jun; 121():27-37. PubMed ID: 29331726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance.
    Wang H; Du H; Zeng S; Pan X; Cheng H; Liu L; Luo F
    Bioelectrochemistry; 2021 Apr; 138():107726. PubMed ID: 33421897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems.
    Zhu X; Siegert M; Yates MD; Logan BE
    Appl Environ Microbiol; 2015 Jun; 81(11):3863-8. PubMed ID: 25819972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells.
    Luo H; Fu S; Liu G; Zhang R; Bai Y; Luo X
    Bioresour Technol; 2014 Sep; 167():462-8. PubMed ID: 25006022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture.
    Salvador AF; Martins G; Melle-Franco M; Serpa R; Stams AJM; Cavaleiro AJ; Pereira MA; Alves MM
    Environ Microbiol; 2017 Jul; 19(7):2727-2739. PubMed ID: 28447396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO
    Bian B; Xu J; Katuri KP; Saikaly PE
    Bioresour Technol; 2021 Jan; 319():124177. PubMed ID: 33035863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.