BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25486445)

  • 21. PPARs and Microbiota in Skeletal Muscle Health and Wasting.
    Manickam R; Duszka K; Wahli W
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33137899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PPARs and the orchestration of metabolic fuel selection.
    Sugden MC; Zariwala MG; Holness MJ
    Pharmacol Res; 2009 Sep; 60(3):141-50. PubMed ID: 19646653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function.
    Hatazawa Y; Minami K; Yoshimura R; Onishi T; Manio MC; Inoue K; Sawada N; Suzuki O; Miura S; Kamei Y
    Biochem Biophys Res Commun; 2016 Dec; 481(3-4):251-258. PubMed ID: 27816452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists.
    Fuster G; Busquets S; Ametller E; Olivan M; Almendro V; de Oliveira CC; Figueras M; López-Soriano FJ; Argilés JM
    Cancer Res; 2007 Jul; 67(13):6512-9. PubMed ID: 17616713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
    Smith AG; Muscat GE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2047-63. PubMed ID: 15922648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic and genetic regulation of cardiac energy substrate preference.
    Kodde IF; van der Stok J; Smolenski RT; de Jong JW
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):26-39. PubMed ID: 17081788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1.
    Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S
    J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity.
    Corrales P; Vidal-Puig A; Medina-Gómez G
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes.
    Luquet S; Gaudel C; Holst D; Lopez-Soriano J; Jehl-Pietri C; Fredenrich A; Grimaldi PA
    Biochim Biophys Acta; 2005 May; 1740(2):313-7. PubMed ID: 15949697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function.
    Yoh K; Ikeda K; Horie K; Inoue S
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta.
    Muoio DM; MacLean PS; Lang DB; Li S; Houmard JA; Way JM; Winegar DA; Corton JC; Dohm GL; Kraus WE
    J Biol Chem; 2002 Jul; 277(29):26089-97. PubMed ID: 12118038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional control of cardiac energy metabolism in health and disease: Lessons from animal models.
    Rubio-Tomás T; Soler-Botija C; Martínez-Estrada O; Villena JA
    Biochem Pharmacol; 2024 Jun; 224():116185. PubMed ID: 38561091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitro-fatty acids as novel electrophilic ligands for peroxisome proliferator-activated receptors.
    Ferreira AM; Minarrieta L; Lamas Bervejillo M; Rubbo H
    Free Radic Biol Med; 2012 Nov; 53(9):1654-63. PubMed ID: 22982052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease.
    Ajith TA; Jayakumar TG
    Clin Exp Pharmacol Physiol; 2016 Jul; 43(7):649-58. PubMed ID: 27115677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minireview: Won't get fooled again: the nonmetabolic roles of peroxisome proliferator-activated receptors (PPARs) in the heart.
    Lockyer P; Schisler JC; Patterson C; Willis MS
    Mol Endocrinol; 2010 Jun; 24(6):1111-9. PubMed ID: 20016041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery.
    Lundsgaard AM; Fritzen AM; Kiens B
    Nutrients; 2020 Jan; 12(2):. PubMed ID: 31973165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart.
    Liu Z; Ding J; McMillen TS; Villet O; Tian R; Shao D
    J Mol Cell Cardiol; 2020 Sep; 146():1-11. PubMed ID: 32592696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases.
    Khuchua Z; Glukhov AI; Strauss AW; Javadov S
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
    Fukushima A; Milner K; Gupta A; Lopaschuk GD
    Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats.
    Lanni A; Mancini FP; Sabatino L; Silvestri E; Franco R; De Rosa G; Goglia F; Colantuoni V
    FEBS Lett; 2002 Aug; 525(1-3):7-12. PubMed ID: 12163152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.