These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25486645)

  • 1. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
    Zhang F; Liu M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of critical errors of locomotion mode recognition for volitional control of powered transfemoral prostheses.
    Fan Zhang ; Ming Liu ; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1128-31. PubMed ID: 26736464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Safe Wearer-Prosthesis Interaction: Evaluation of Gait Stability and Human Compensation Strategy Under Faults in Robotic Transfemoral Prostheses.
    Lee IC; Liu M; Lewek MD; Hu X; Filer WG; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2773-2782. PubMed ID: 36136925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intent recognition in a powered lower limb prosthesis using time history information.
    Young AJ; Simon AM; Fey NP; Hargrove LJ
    Ann Biomed Eng; 2014 Mar; 42(3):631-41. PubMed ID: 24052324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.
    Liu M; Wang D; Helen Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.
    Spanias JA; Simon AM; Perreault EJ; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5083-5086. PubMed ID: 28269411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters.
    Huang H; Crouch DL; Liu M; Sawicki GS; Wang D
    Ann Biomed Eng; 2016 May; 44(5):1613-24. PubMed ID: 26407703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal control for an above-knee prosthesis with two degrees of freedom.
    Popović D; Oğuztöreli MN; Stein RB
    J Biomech; 1995 Jan; 28(1):89-98. PubMed ID: 7852445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
    Young AJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Kinematics and Gait Analysis, of Prosthetic Knee Joints: A Systematic Review.
    Rasheed F; Martin S; Tse KM
    Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tolerance of neural decoding errors for powered artificial legs: A pilot study.
    Fan Zhang ; Ming Liu ; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4630-4633. PubMed ID: 28269307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review.
    Xu D; Wang Q
    Cyborg Bionic Syst; 2021; 2021():9863761. PubMed ID: 36285130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.