BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25487017)

  • 21. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity.
    Faust O; Abayev-Avraham M; Wentink AS; Maurer M; Nillegoda NB; London N; Bukau B; Rosenzweig R
    Nature; 2020 Nov; 587(7834):489-494. PubMed ID: 33177718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock protein 40: structural studies and their functional implications.
    Li J; Qian X; Sha B
    Protein Pept Lett; 2009; 16(6):606-12. PubMed ID: 19519518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-chaperones of the mammalian endoplasmic reticulum.
    Melnyk A; Rieger H; Zimmermann R
    Subcell Biochem; 2015; 78():179-200. PubMed ID: 25487022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Members of the Hsp70 Family Recognize Distinct Types of Sequences to Execute ER Quality Control.
    Behnke J; Mann MJ; Scruggs FL; Feige MJ; Hendershot LM
    Mol Cell; 2016 Sep; 63(5):739-52. PubMed ID: 27546788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1.
    Qian X; Hou W; Zhengang L; Sha B
    Biochem J; 2002 Jan; 361(Pt 1):27-34. PubMed ID: 11743879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro.
    Rauch JN; Gestwicki JE
    J Biol Chem; 2014 Jan; 289(3):1402-14. PubMed ID: 24318877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes.
    Chien V; Aitken JF; Zhang S; Buchanan CM; Hickey A; Brittain T; Cooper GJ; Loomes KM
    Biochem J; 2010 Nov; 432(1):113-21. PubMed ID: 20735358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock.
    Botha M; Chiang AN; Needham PG; Stephens LL; Hoppe HC; Külzer S; Przyborski JM; Lingelbach K; Wipf P; Brodsky JL; Shonhai A; Blatch GL
    Cell Stress Chaperones; 2011 Jul; 16(4):389-401. PubMed ID: 21191678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution NMR investigation on the structure and function of the isolated J-domain from Sis1: Evidence of transient inter-domain interactions in the full-length protein.
    Pinheiro GMS; Amorim GC; Iqbal A; Almeida FCL; Ramos CHI
    Arch Biochem Biophys; 2019 Jul; 669():71-79. PubMed ID: 31141701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells.
    Deane CA; Brown IR
    Cell Stress Chaperones; 2017 Mar; 22(2):191-200. PubMed ID: 27966060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gentamicin inhibits HSP70-assisted protein folding by interfering with substrate recognition.
    Yamamoto S; Nakano S; Owari K; Fuziwara K; Ogawa N; Otaka M; Tamaki K; Watanabe S; Komatsuda A; Wakui H; Sawada K; Kubota H; Itoh H
    FEBS Lett; 2010 Feb; 584(4):645-51. PubMed ID: 20026329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural insights into a unique Hsp70-Hsp40 interaction in the eukaryotic ribosome-associated complex.
    Weyer FA; Gumiero A; Gesé GV; Lapouge K; Sinning I
    Nat Struct Mol Biol; 2017 Feb; 24(2):144-151. PubMed ID: 28067917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms for regulation of Hsp70 function by Hsp40.
    Fan CY; Lee S; Cyr DM
    Cell Stress Chaperones; 2003; 8(4):309-16. PubMed ID: 15115283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. J-domain protein chaperone circuits in proteostasis and disease.
    Zhang R; Malinverni D; Cyr DM; Rios PL; Nillegoda NB
    Trends Cell Biol; 2023 Jan; 33(1):30-47. PubMed ID: 35729039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding.
    Lee S; Fan CY; Younger JM; Ren H; Cyr DM
    J Biol Chem; 2002 Jun; 277(24):21675-82. PubMed ID: 11919183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity.
    Fewell SW; Smith CM; Lyon MA; Dumitrescu TP; Wipf P; Day BW; Brodsky JL
    J Biol Chem; 2004 Dec; 279(49):51131-40. PubMed ID: 15448148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NudC guides client transfer between the Hsp40/70 and Hsp90 chaperone systems.
    Biebl MM; Delhommel F; Faust O; Zak KM; Agam G; Guo X; Mühlhofer M; Dahiya V; Hillebrand D; Popowicz GM; Kampmann M; Lamb DC; Rosenzweig R; Sattler M; Buchner J
    Mol Cell; 2022 Feb; 82(3):555-569.e7. PubMed ID: 35063133
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Pinheiro GMS; Amorim GC; Iqbal A; Ramos CHI; Almeida FCL
    Biomol NMR Assign; 2018 Oct; 12(2):279-281. PubMed ID: 29713947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into Hsp40-mediated proteostasis.
    Karamanos TK; Tugarinov V; Clore GM
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21529-21538. PubMed ID: 31591220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis.
    Malinverni D; Jost Lopez A; De Los Rios P; Hummer G; Barducci A
    Elife; 2017 May; 6():. PubMed ID: 28498104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.