These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25487092)

  • 1. Computational design of RNA parts, devices, and transcripts with kinetic folding algorithms implemented on multiprocessor clusters.
    Thimmaiah T; Voje WE; Carothers JM
    Methods Mol Biol; 2015; 1244():45-61. PubMed ID: 25487092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-driven engineering of RNA devices to quantitatively program gene expression.
    Carothers JM; Goler JA; Juminaga D; Keasling JD
    Science; 2011 Dec; 334(6063):1716-9. PubMed ID: 22194579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme.
    Kobori S; Takahashi K; Yokobayashi Y
    ACS Synth Biol; 2017 Jul; 6(7):1283-1288. PubMed ID: 28398719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paradigms for computational nucleic acid design.
    Dirks RM; Lin M; Winfree E; Pierce NA
    Nucleic Acids Res; 2004; 32(4):1392-403. PubMed ID: 14990744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of allosteric ribozymes as molecular biosensors.
    Penchovsky R
    Biotechnol Adv; 2014; 32(5):1015-27. PubMed ID: 24877999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.
    Goler JA; Carothers JM; Keasling JD
    Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering.
    Sparkman-Yager D; Correa-Rojas RA; Carothers JM
    Methods Enzymol; 2015; 550():321-40. PubMed ID: 25605393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INFO-RNA--a server for fast inverse RNA folding satisfying sequence constraints.
    Busch A; Backofen R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W310-3. PubMed ID: 17452349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and design of DNA and RNA structures.
    Andersen ES
    N Biotechnol; 2010 Jul; 27(3):184-93. PubMed ID: 20193785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs.
    Laserson U; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(18):6057-69. PubMed ID: 16254081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes.
    Penchovsky R; Breaker RR
    Nat Biotechnol; 2005 Nov; 23(11):1424-33. PubMed ID: 16244657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of peptide-aptamer binding.
    Rhinehardt KL; Mohan RV; Srinivas G
    Methods Mol Biol; 2015; 1268():313-33. PubMed ID: 25555731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots.
    Xayaphoummine A; Bucher T; Isambert H
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W605-10. PubMed ID: 15980546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways.
    Stevens JT; Carothers JM
    ACS Synth Biol; 2015 Feb; 4(2):107-15. PubMed ID: 25314371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational design of RNA libraries for in vitro selection of aptamers.
    Chushak YG; Martin JA; Chávez JL; Kelley-Loughnane N; Stone MO
    Methods Mol Biol; 2014; 1111():1-15. PubMed ID: 24549608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach.
    Rehm C; Klauser B; Hartig JS
    Methods Mol Biol; 2015; 1316():127-40. PubMed ID: 25967058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new frontier in synthetic biology: automated design of small RNA devices in bacteria.
    Rodrigo G; Landrain TE; Shen S; Jaramillo A
    Trends Genet; 2013 Sep; 29(9):529-36. PubMed ID: 23891178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A step-by-step introduction to rule-based design of synthetic genetic constructs using GenoCAD.
    Wilson ML; Hertzberg R; Adam L; Peccoud J
    Methods Enzymol; 2011; 498():173-88. PubMed ID: 21601678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo screening for aptazyme-based bacterial riboswitches.
    Rehm C; Hartig JS
    Methods Mol Biol; 2014; 1111():237-49. PubMed ID: 24549624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.