These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 25487116)
1. Characterization of lignocellulolytic enzymes from white-rot fungi. Manavalan T; Manavalan A; Heese K Curr Microbiol; 2015 Apr; 70(4):485-98. PubMed ID: 25487116 [TBL] [Abstract][Full Text] [Related]
2. Lignocellulosic residues: biodegradation and bioconversion by fungi. Sánchez C Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826 [TBL] [Abstract][Full Text] [Related]
3. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals. Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652 [TBL] [Abstract][Full Text] [Related]
4. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Saini S; Sharma KK Int J Biol Macromol; 2021 Dec; 193(Pt B):2304-2319. PubMed ID: 34800524 [TBL] [Abstract][Full Text] [Related]
5. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Valásková V; Baldrian P Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911 [TBL] [Abstract][Full Text] [Related]
6. Ligninolytic fungal laccases and their biotechnological applications. Singh Arora D; Kumar Sharma R Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857 [TBL] [Abstract][Full Text] [Related]
7. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. Vasina DV; Pavlov AR; Koroleva OV BMC Microbiol; 2016 Jun; 16(1):106. PubMed ID: 27296712 [TBL] [Abstract][Full Text] [Related]
8. Differential production of lignocellulolytic enzymes by a white rot fungus Termitomyces sp. OE147 on cellulose and lactose. Bashir H; Gangwar R; Mishra S Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1290-9. PubMed ID: 26164778 [TBL] [Abstract][Full Text] [Related]
9. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Dashtban M; Schraft H; Qin W Int J Biol Sci; 2009 Sep; 5(6):578-95. PubMed ID: 19774110 [TBL] [Abstract][Full Text] [Related]
10. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498 [TBL] [Abstract][Full Text] [Related]
11. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Kumar V; Pallavi P; Sen SK; Raut S Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323 [TBL] [Abstract][Full Text] [Related]
12. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures]. Wang C; Yu H; Fu S Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416 [TBL] [Abstract][Full Text] [Related]
13. Involvement of lignocellulolytic enzymes in the decomposition of leaf litter in a subtropical forest. Hao JJ; Tian XJ; Song FQ; He XB; Zhang ZJ; Zhang P J Eukaryot Microbiol; 2006; 53(3):193-8. PubMed ID: 16677342 [TBL] [Abstract][Full Text] [Related]
14. Structure and action mechanism of ligninolytic enzymes. Wong DW Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264 [TBL] [Abstract][Full Text] [Related]
15. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Liu G; Qin Y; Li Z; Qu Y Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038 [TBL] [Abstract][Full Text] [Related]
16. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Gibson DM; King BC; Hayes ML; Bergstrom GC Curr Opin Microbiol; 2011 Jun; 14(3):264-70. PubMed ID: 21536481 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Várnai A; Mäkelä MR; Djajadi DT; Rahikainen J; Hatakka A; Viikari L Adv Appl Microbiol; 2014; 88():103-65. PubMed ID: 24767427 [TBL] [Abstract][Full Text] [Related]
18. Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes. Hori C; Gaskell J; Cullen D; Sabat G; Stewart PE; Lail K; Peng Y; Barry K; Grigoriev IV; Kohler A; Fauchery L; Martin F; Zeiner CA; Bhatnagar JM Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097442 [TBL] [Abstract][Full Text] [Related]
19. Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. Manavalan T; Manavalan A; Thangavelu KP; Heese K J Proteomics; 2012 Dec; 77():298-309. PubMed ID: 23000217 [TBL] [Abstract][Full Text] [Related]
20. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. Baldrian P; Gabriel J FEMS Microbiol Lett; 2003 Mar; 220(2):235-40. PubMed ID: 12670686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]