These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25487171)

  • 1. Measurements of liposome biomechanical properties by combining line optical tweezers and dielectrophoresis.
    Spyratou E; Cunaj E; Tsigaridas G; Mourelatou EA; Demetzos C; Serafetinides AA; Makropoulou M
    J Liposome Res; 2015 Sep; 25(3):202-210. PubMed ID: 25487171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation.
    Kodama T; Osaki T; Kawano R; Kamiya K; Miki N; Takeuchi S
    Biosens Bioelectron; 2013 Sep; 47():206-12. PubMed ID: 23570681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring local properties inside a cell-mimicking structure using rotating optical tweezers.
    Zhang S; Gibson LJ; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    J Biophotonics; 2019 Jul; 12(7):e201900022. PubMed ID: 30779305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active probing of the mechanical properties of biological and synthetic vesicles.
    Piontek MC; Lira RB; Roos WH
    Biochim Biophys Acta Gen Subj; 2021 Apr; 1865(4):129486. PubMed ID: 31734458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic real time evaluation of red blood cell elasticity by optical tweezers.
    Moura DS; Silva DC; Williams AJ; Bezerra MA; Fontes A; de Araujo RE
    Rev Sci Instrum; 2015 May; 86(5):053702. PubMed ID: 26026527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.
    Bai G; Li Y; Chu HK; Wang K; Tan Q; Xiong J; Sun D
    Biomed Eng Online; 2017 Apr; 16(1):41. PubMed ID: 28376803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of optical trap and microbeam to investigate the mechanical and transport characteristics of tunneling nanotubes in tumor spheroids.
    Patheja P; Dasgupta R; Dube A; Ahlawat S; Verma RS; Gupta PK
    J Biophotonics; 2015 Sep; 8(9):694-704. PubMed ID: 25355694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers.
    Ketelaar T; van der Honing HS; Emons AM
    Biochem Soc Trans; 2010 Jun; 38(3):823-8. PubMed ID: 20491670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping red blood cells in living animals using optical tweezers.
    Zhong MC; Wei XB; Zhou JH; Wang ZQ; Li YM
    Nat Commun; 2013; 4():1768. PubMed ID: 23612309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.
    Hendricks AG; Goldman YE
    Methods Mol Biol; 2017; 1486():537-552. PubMed ID: 27844443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.
    Ti C; Thomas GM; Ren Y; Zhang R; Wen Q; Liu Y
    Biomed Opt Express; 2015 Jul; 6(7):2325-36. PubMed ID: 26203364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping and Driving Individual Charged Micro-particles in Fluid with an Electrostatic Device.
    Xu J; Lei Z; Guo J; Huang J; Wang W; Reibetanz U; Xu S
    Nanomicro Lett; 2016; 8(3):270-281. PubMed ID: 30460287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.