These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25487557)

  • 21. Thermally biased AC electrokinetic pumping effect for lab-on-a-chip based delivery of biofluids.
    Yuan Q; Wu J
    Biomed Microdevices; 2013 Feb; 15(1):125-33. PubMed ID: 22932955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid AC Electrokinetic Micromixer with Electrically Conductive Sidewalls.
    Yang F; Zhao W; Kuang C; Wang G
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip.
    Vaillier C; Honegger T; Kermarrec F; Gidrol X; Peyrade D
    PLoS One; 2014; 9(4):e95231. PubMed ID: 24736275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-frequency electrokinetics in a periodic pillar array for particle separation.
    Calero V; Fernández-Mateo R; Morgan H; García-Sánchez P; Ramos A
    J Chromatogr A; 2023 Sep; 1706():464240. PubMed ID: 37544238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DC-biased AC-electrokinetics: a conductivity gradient driven fluid flow.
    Ng WY; Ramos A; Lam YC; Wijaya IP; Rodriguez I
    Lab Chip; 2011 Dec; 11(24):4241-7. PubMed ID: 22052533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel.
    Sasaki N; Kitamori T; Kim HB
    Electrophoresis; 2012 Sep; 33(17):2668-73. PubMed ID: 22965710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The present and future role of microfluidics in biomedical research.
    Sackmann EK; Fulton AL; Beebe DJ
    Nature; 2014 Mar; 507(7491):181-9. PubMed ID: 24622198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-range electrothermal fluid motion in microfluidic systems.
    Lu Y; Ren Q; Liu T; Leung SL; Gau V; Liao JC; Chan CL; Wong PK
    Int J Heat Mass Transf; 2016 Jul; 98():341-349. PubMed ID: 27127306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optoelectrical microfluidics as a promising tool in biology.
    Mishra A; Kwon JS; Thakur R; Wereley S
    Trends Biotechnol; 2014 Aug; 32(8):414-21. PubMed ID: 24998518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A rapid electrochemical biosensor based on an AC electrokinetics enhanced immuno-reaction.
    Cheng IF; Yang HL; Chung CC; Chang HC
    Analyst; 2013 Aug; 138(16):4656-62. PubMed ID: 23776933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofluid pumping and mixing by an AC electrothermal micropump embedded with a spiral microelectrode pair in a cylindrical microchannel.
    Gao X; Li Y
    Electrophoresis; 2018 Dec; 39(24):3156-3170. PubMed ID: 30194859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics.
    Berli CL
    Electrophoresis; 2013 Mar; 34(5):622-30. PubMed ID: 23254943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes.
    Jang LS; Huang PH; Lan KC
    Biosens Bioelectron; 2009 Aug; 24(12):3637-44. PubMed ID: 19545991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic systems with ion-selective membranes.
    Slouka Z; Senapati S; Chang HC
    Annu Rev Anal Chem (Palo Alto Calif); 2014; 7():317-35. PubMed ID: 24818814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Universal Electrode Approach for Automated Electrochemical Molecular Analyses.
    Sin ML; Gau V; Liao JC; Wong PK
    J Microelectromech Syst; 2013 Oct; 22(5):1126-1132. PubMed ID: 24860248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Entropic electrokinetics: recirculation, particle separation, and negative mobility.
    Malgaretti P; Pagonabarraga I; Rubi JM
    Phys Rev Lett; 2014 Sep; 113(12):128301. PubMed ID: 25279646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.