These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25487767)

  • 1. Structure, Mechanism, and Mutation of Bacterial Luciferase.
    Tinikul R; Chaiyen P
    Adv Biochem Eng Biotechnol; 2016; 154():47-74. PubMed ID: 25487767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial luciferase: Molecular mechanisms and applications.
    Tinikul R; Chunthaboon P; Phonbuppha J; Paladkong T
    Enzymes; 2020; 47():427-455. PubMed ID: 32951831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase.
    Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P
    FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM Molecular Modeling Reveals Mechanism Insights into Flavin Peroxide Formation in Bacterial Luciferase.
    Lawan N; Tinikul R; Surawatanawong P; Mulholland AJ; Chaiyen P
    J Chem Inf Model; 2022 Jan; 62(2):399-411. PubMed ID: 34989561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Minimized Chemoenzymatic Cascade for Bacterial Luciferase in Bioreporter Applications.
    Phonbuppha J; Tinikul R; Wongnate T; Intasian P; Hollmann F; Paul CE; Chaiyen P
    Chembiochem; 2020 Jul; 21(14):2073-2079. PubMed ID: 32187433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
    Sparks JM; Baldwin TO
    Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.
    Campbell ZT; Weichsel A; Montfort WR; Baldwin TO
    Biochemistry; 2009 Jul; 48(26):6085-94. PubMed ID: 19435287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bacterial luciferase with aldehyde substrates and inhibitors.
    Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter.
    Tinikul R; Thotsaporn K; Thaveekarn W; Jitrapakdee S; Chaiyen P
    J Biotechnol; 2012 Dec; 162(2-3):346-53. PubMed ID: 23000378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of Glu175 on stability and folding of bacterial luciferase: stopped-flow fluorescence study.
    Shirazy NH; Ranjbar B; Hosseinkhani S; Khalifeh K; Madvar AR; Naderi-Manesh H
    J Biochem Mol Biol; 2007 Jul; 40(4):453-8. PubMed ID: 17669259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the generation of myristylated FMN by bacterial luciferase.
    Tabib CR; Brodl E; Macheroux P
    Mol Microbiol; 2017 Jun; 104(6):1027-1036. PubMed ID: 28345146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.
    Kim DS; Choi JR; Ko JA; Kim K
    Curr Protein Pept Sci; 2018; 19(1):16-21. PubMed ID: 27875968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions.
    Fisher AJ; Thompson TB; Thoden JB; Baldwin TO; Rayment I
    J Biol Chem; 1996 Sep; 271(36):21956-68. PubMed ID: 8703001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
    Phintha A; Chaiyen P
    J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of bacterial luciferase with ethoxyformic anhydride: evidence for an essential histidyl residue.
    Cousineau J; Meighen E
    Biochemistry; 1976 Nov; 15(23):4992-5000. PubMed ID: 990259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Sensitized Bioluminescence Mechanism of Bacterial Luciferase.
    Lee J; Müller F; Visser AJWG
    Photochem Photobiol; 2019 May; 95(3):679-704. PubMed ID: 30485901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.