These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25487879)
1. Fly ash mycorrhizoremediation through Paspalum scrobiculatum L., inoculated with Rhizophagus fasciculatus. Channabasava A; Lakshman HC; Muthukumar T C R Biol; 2015 Jan; 338(1):29-39. PubMed ID: 25487879 [TBL] [Abstract][Full Text] [Related]
2. [Effects of Arbuscular Mycorrhizal Fungi on the Growth of Reeds in Wetland Soils with Different Salt Content]. Guo JY; Guo W; Bi N; Fu RY; Zhao WJ; Zhao RX; Wang LX Huan Jing Ke Xue; 2015 Apr; 36(4):1481-8. PubMed ID: 26164930 [TBL] [Abstract][Full Text] [Related]
3. Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Bi YL; Li XL; Christie P; Hu ZQ; Wong MH Chemosphere; 2003 Feb; 50(6):863-9. PubMed ID: 12688503 [TBL] [Abstract][Full Text] [Related]
4. [Potential of Arbuscular Mycorrhizal Fungi, Biochar, and Combined Amendment on Sandy Soil Improvement Driven by Microbial Community]. Zhang ZC; Yang JY; Hao BH; Hao LJ; Luo JQ; Li X; Diao FW; Zhang JX; Guo W Huan Jing Ke Xue; 2021 Apr; 42(4):2066-2079. PubMed ID: 33742842 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizas amplify the risk of heavy metal transfer to human food chain from fly ash ameliorated agricultural soils. Goswami V; Deepika S; Diwakar S; Kothamasi D Environ Pollut; 2023 Jul; 329():121733. PubMed ID: 37119999 [TBL] [Abstract][Full Text] [Related]
6. [Biological Effects of ZnO Nanoparticles as Influenced by Arbuscular Mycorrhizal Inoculation and Phosphorus Fertilization]. Jing XX; Su ZZ; Xing HE; Wang FY; Shi ZY; Liu XQ Huan Jing Ke Xue; 2016 Aug; 37(8):3208-3215. PubMed ID: 29964752 [TBL] [Abstract][Full Text] [Related]
7. Variations in organic carbon, aggregation, and enzyme activities of gangue-fly ash-reconstructed soils with sludge and arbuscular mycorrhizal fungi during 6-year reclamation. Yin N; Zhang Z; Wang L; Qian K Environ Sci Pollut Res Int; 2016 Sep; 23(17):17840-9. PubMed ID: 27250093 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead- contaminated soil by vetiver grass. Bahraminia M; Zarei M; Ronaghi A; Ghasemi-Fasaei R Int J Phytoremediation; 2016; 18(7):730-7. PubMed ID: 26709443 [TBL] [Abstract][Full Text] [Related]
9. Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Gosling P; Jones J; Bending GD Mycorrhiza; 2016 Jan; 26(1):77-83. PubMed ID: 26100128 [TBL] [Abstract][Full Text] [Related]
10. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil. García I; Mendoza R Plant Biol (Stuttg); 2012 Nov; 14(6):964-71. PubMed ID: 22512871 [TBL] [Abstract][Full Text] [Related]
11. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
12. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils. Chandra KK; Kumar N; Chand G J Environ Biol; 2010 Nov; 31(6):975-9. PubMed ID: 21506485 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Rufyikiri G; Huysmans L; Wannijn J; Van Hees M; Leyval C; Jakobsen I Environ Pollut; 2004 Aug; 130(3):427-36. PubMed ID: 15182973 [TBL] [Abstract][Full Text] [Related]
14. Use of Arbuscular Mycorrhiza and Organic Amendments to Enhance Growth of Macaranga peltata (Roxb.) Müll. Arg. in Iron Ore Mine Wastelands. Rodrigues CR; Rodrigues BF Int J Phytoremediation; 2015; 17(1-6):485-92. PubMed ID: 25495939 [TBL] [Abstract][Full Text] [Related]
15. Intraspecific ploidy variation: A hidden, minor player in plant-soil-mycorrhizal fungi interactions. Sudová R; Pánková H; Rydlová J; Münzbergová Z; Suda J Am J Bot; 2014 Jan; 101(1):26-33. PubMed ID: 24388962 [TBL] [Abstract][Full Text] [Related]
16. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu-Ni mine soil. Ultra VU; Manyiwa T Environ Geochem Health; 2021 Apr; 43(4):1337-1353. PubMed ID: 32591945 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Schüßler A; Krüger C; Urgiles N Mycorrhiza; 2016 Apr; 26(3):199-207. PubMed ID: 26260945 [TBL] [Abstract][Full Text] [Related]
18. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Schneider J; Bundschuh J; Rangel WM; Guilherme LRG Environ Pollut; 2017 May; 224():125-135. PubMed ID: 28214191 [TBL] [Abstract][Full Text] [Related]
19. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Kohler J; Caravaca F; Azcón R; Díaz G; Roldán A Sci Total Environ; 2015 May; 514():42-8. PubMed ID: 25659304 [TBL] [Abstract][Full Text] [Related]
20. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi. Arriagada C; Sampedro I; Garcia-Romera I; Ocampo J Sci Total Environ; 2009 Aug; 407(17):4799-806. PubMed ID: 19515400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]